The Unintended Effects of an Intensive Margin Reform to Student Loans on Educational Attainment

Online Appendix

Pinjas Albagli London School of Economics Andrés García-Echalar Universidad de los Andes

February, 2023

Contents

A	Replication of Main Results Excluding Year 2008	2
в	IV Details	16

A Replication of Main Results Excluding Year 2008

This appendix replicates our analysis in the main text excluding cohort 2008 for immediate enrollment and cohorts 2007–2008 for two-year enrollment and second-year dropout. Our main results remain virtually unchanged while the evidence supporting the parallel trends assumption is stronger. The numbering of tables and figures replicates that of the main text to facilitate comparisons.

List of Figures

1	Dynamics of Immediate Enrollment	3
2	Dynamics of Persistence and Retention	5
A.1	Outcomes over Time by Eligibility	11
B.1	Immediate and Two-Year-Best PSU Scores	14

List of Tables

3	Immediate Enrollment 3
4	Two-Year Enrollment
5	Second-Year Dropout
6	Difference-in-Discontinuities Design: Immediate Enrollment
7	Difference-in-Discontinuities Design: Two-Year Enrollment
8	Difference-in-Discontinuities Design: Second-Year Dropout
9	Heterogeneity of Main Results by Student Sex
10	Heterogeneity of Main Results by School Type 10
A.1	Dynamics Excluding Year 2008
A.2	Placebo Reform Excluding Year 2008 13
B.1	IV-DiD Regressions for Two-Year Outcomes
B.2	IV-Diff-in-Disc Design for Two-Year Outcomes
B.3	Immediate vs Two-Year Eligibility
C.2	Evidence of Female Delay 15

		HES			Universities		Vocational		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Eligible \times exposed	-0.001 (0.004)	-0.002 (0.004)	-0.003 (0.004)	0.025^{***} (0.005)	0.025^{***} (0.005)	0.023^{***} (0.005)	-0.026^{***} (0.003)	-0.027^{***} (0.003)	-0.027^{***} (0.003)
Exposed	0.062^{***} (0.003)	$\begin{array}{c} 0.071^{***} \\ (0.007) \end{array}$	$\begin{array}{c} 0.078^{***} \\ (0.006) \end{array}$	-0.012^{***} (0.001)	-0.035^{***} (0.007)	-0.031^{***} (0.007)	0.074^{***} (0.003)	0.105^{***} (0.004)	0.108^{***} (0.004)
Eligible	$\begin{array}{c} 0.261^{***} \\ (0.003) \end{array}$	0.261^{***} (0.003)	$\begin{array}{c} 0.243^{***} \\ (0.003) \end{array}$	0.291^{***} (0.003)	0.291^{***} (0.003)	$\begin{array}{c} 0.271^{***} \\ (0.004) \end{array}$	-0.029^{***} (0.002)	-0.029^{***} (0.002)	-0.028^{***} (0.002)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980
Control group size	508,298	508,298	508,298	508,298	$508,\!298$	$508,\!298$	508,298	508,298	$508,\!298$
Outcome mean	0.536	0.536	0.536	0.355	0.355	0.355	0.182	0.182	0.182

Table 3: Immediate Enrollment

Notes: Clustered standard errors at the class level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include gender, attendance rate, district and number of family members at different levels in the education system. Control group size accounts for the number of ineligible individuals in the exposure period, while Outcome mean refers to the mean of the dependent variable of those individuals.

Figure 1: Dynamics of Immediate Enrollment

		HES			Universities	1	Vocational		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Eligible \times exposed (2nd year)	0.015^{***} (0.005)	0.014^{***} (0.005)	0.012^{***} (0.005)	0.023^{***} (0.006)	0.023^{***} (0.006)	0.021^{***} (0.006)	-0.011^{***} (0.003)	-0.012^{***} (0.003)	-0.012^{***} (0.003)
Exposed (2nd year)	0.035^{***} (0.004)	0.054^{***} (0.006)	0.057^{***} (0.006)	-0.005^{***} (0.001)	-0.009 (0.006)	-0.007 (0.006)	0.039^{***} (0.003)	0.063^{***} (0.004)	0.065^{***} (0.004)
Eligible	$\begin{array}{c} 0.283^{***} \\ (0.004) \end{array}$	0.283^{***} (0.004)	0.261^{***} (0.004)	0.270^{***} (0.005)	0.270^{***} (0.005)	0.250^{***} (0.005)	0.010^{***} (0.003)	0.010^{***} (0.003)	0.008^{***} (0.003)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	1,035,551	1,035,551	1,035,551	1,035,568	1,035,568	1,035,568	1,037,137	1,037,137	1,037,137
Control group size	$263,\!400$	263,400	$263,\!400$	$263,\!402$	$263,\!402$	263,402	$263,\!959$	263,959	$263,\!959$
Outcome mean	0.474	0.474	0.474	0.310	0.310	0.310	0.151	0.151	0.151

Table 4: Two-Year Enrollment

Notes: Clustered standard errors at the class level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include gender, attendance rate, district and number of family members at different levels in the education system. Control group size accounts for the number of ineligible individuals in the exposure period, while Outcome mean refers to the mean of the dependent variable of those individuals.

Table 5: Second-Year Dropo

		HES			Universities	1	Vocational		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Eligible \times exposed (2nd year)	-0.014^{***} (0.005)	-0.014^{***} (0.005)	-0.014^{***} (0.004)	-0.049^{***} (0.009)	-0.049^{***} (0.009)	-0.050^{***} (0.009)	-0.003 (0.005)	-0.003 (0.005)	-0.008 (0.005)
Exposed (2nd year)	0.018^{***} (0.005)	0.023^{***} (0.005)	$\begin{array}{c} 0.034^{***} \\ (0.005) \end{array}$	0.057^{***} (0.010)	0.056^{***} (0.010)	0.070^{***} (0.010)	$0.006 \\ (0.005)$	$0.007 \\ (0.006)$	0.037^{***} (0.006)
Eligible	-0.182^{***} (0.004)	-0.182^{***} (0.004)	-0.125^{***} (0.004)	-0.221^{***} (0.008)	-0.221^{***} (0.008)	-0.156^{***} (0.007)	-0.143^{***} (0.004)	-0.143^{***} (0.004)	-0.118^{***} (0.004)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	526,147	526,147	521,391	301,826	301,826	297,440	224,857	224,857	224,480
Control group size	139,280	139,280	139,280	90,748	90,748	90,748	48,669	48,669	48,669
Outcome mean	0.103	0.103	0.103	0.102	0.102	0.102	0.180	0.180	0.180

Notes: Clustered standard errors at the class level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include gender, attendance rate, district and number of family members at different levels in the education system. Program characteristics include duration, annual fee, and an indicator for accreditation. Control group size accounts for the number of ineligible individuals in the exposure period, while Outcome mean refers to the mean of the dependent variable of those individuals.

Figure 2: Dynamics of Persistence and Retention

(a) Two-Year Enrollment

		All students		GPA < 5.3				
	HES	Universities	Vocational	HES	Universities	Vocational		
	(1)	(2)	(3)	(4)	(5)	(6)		
Difference	0.011*	0.023***	-0.006	0.003	0.025**	-0.024**		
	(0.006)	(0.006)	(0.006)	(0.013)	(0.010)	(0.012)		
Exposed	0.074***	0.127***	-0.048***	0.062***	0.084***	-0.024***		
	(0.004)	(0.005)	(0.005)	(0.009)	(0.007)	(0.009)		
Unexposed	0.063***	0.104***	-0.042***	0.059***	0.059***	-0.001		
	(0.005)	(0.004)	(0.004)	(0.009)	(0.007)	(0.007)		
Bandwidth								
Exposed	51.257	36.629	41.201	48.882	47.259	43.601		
Unexposed	50.574	42.220	52.172	42.668	45.042	53.310		
Observations								
Exposed	$117,\!087$	84,280	$94,\!582$	$27,\!136$	$26,\!254$	24,260		
Unexposed	113,523	95,218	116,986	27,528	29,019	34,149		

Table 6: Difference-in-Discontinuities Design: Immediate Enrollment

Notes: Optimal bandwidths separately selected by exposure. Triangular kernel is used for local linear regressions. SUEST standard errors clustered at the class level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

		All students			GPA < 5.3				
	HES	Universities	Vocational	HES	Universities	Vocational			
	(1)	(2)	(3)	(4)	(5)	(6)			
Difference	0.019**	0.015**	0.004	0.041**	0.028**	0.006			
	(0.007)	(0.007)	(0.007)	(0.016)	(0.011)	(0.013)			
Exposed	0.076***	0.107***	-0.038***	0.080***	0.072***	0.000			
	(0.004)	(0.004)	(0.005)	(0.008)	(0.006)	(0.008)			
Unexposed	0.057***	0.092***	-0.042***	0.040***	0.044***	-0.006			
	(0.006)	(0.005)	(0.005)	(0.014)	(0.010)	(0.010)			
Bandwidth									
Exposed	58.077	37.934	38.461	64.812	51.634	48.703			
Unexposed	53.155	50.305	48.858	35.814	44.375	45.506			
Observations									
Exposed	$133,\!494$	88,264	$89,\!627$	$38,\!607$	$31,\!115$	29,424			
Unexposed	$61,\!536$	58,343	56,759	11,691	$14,\!464$	14,832			

Table 7: Difference-in-Discontinuities Design: Two-Year Enrollment

Notes: Optimal bandwidths separately selected by exposure. Triangular kernel is used for local linear regressions. SUEST standard errors clustered at the class level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

		All student	s	GPA < 5.3				
	$\begin{array}{c} \text{HES} \\ (1) \end{array}$	Universities (2)	Vocational (3)	HES (4)	Universities (5)	Vocational (6)		
Difference	-0.009	0.000	-0.025^{**}	-0.025	-0.019	-0.051^{**}		
	(0.007)	(0.013)	(0.011)	(0.017)	(0.031)	(0.025)		
Exposed	-0.008^{*}	-0.017^{**}	0.002	-0.029^{***}	-0.009	-0.038^{**}		
	(0.004)	(0.008)	(0.006)	(0.010)	(0.018)	(0.016)		
Unexposed	0.001	-0.018	0.026^{***}	-0.004	0.010	0.013		
	(0.006)	(0.011)	(0.009)	(0.014)	(0.025)	(0.019)		
Bandwidth Exposed Unexposed Observations	54.348 50.402	51.297 49.227	46.782 50.556	50.644 41.813	54.499 38.712	31.156 50.574		
Exposed	69,669	30,248	32,749	15,517	6,386	5,968		
Unexposed	28,947	13,368	15,330	6,267	2,471	4,341		

Table 8: Difference-in-Discontinuities Design: Second-Year Dropout

Notes: Optimal bandwidths separately selected by exposure. Triangular kernel is used for local linear regressions. SUEST standard errors clustered at the class level in parentheses. *** p< 0.01, ** p< 0.05, * p< 0.1.

	HES				Universities	s	Vocational		
	Female (1)	Male (2)	Difference (3)	Female (4)	Male (5)	Difference (6)	Female (7)	Male (8)	Difference (9)
Immediate Enrollment	$\begin{array}{c} -0.011^{**} \\ (0.004) \\ [720,112] \\ \{0.51\} \end{array}$	$\begin{array}{c} 0.001 \\ (0.005) \\ [633,868] \\ \{0.51\} \end{array}$	-0.012^{**} (0.006) [1,353,980] $\{0\}$	$\begin{array}{c} 0.021^{***} \\ (0.005) \\ [720,112] \\ \{0.30\} \end{array}$	$\begin{array}{c} 0.022^{***} \\ (0.007) \\ [633,868] \\ \{0.29\} \end{array}$	$\begin{array}{c} -0.001 \\ (0.007) \\ [1,353,980] \\ \{.01\} \end{array}$	$\begin{array}{c} -0.032^{***}\\ (0.004)\\ [720,112]\\ \{0.21\}\end{array}$	$\begin{array}{c} -0.021^{***} \\ (0.004) \\ [633,868] \\ \{0.22\} \end{array}$	-0.011^{**} (0.005) [1,353,980] $\{01\}$
Two-Year Enrollment	$\begin{array}{c} 0.005 \\ (0.005) \\ [550,288] \\ \{0.45\} \end{array}$	$\begin{array}{c} 0.018^{***} \\ (0.007) \\ [485,263] \\ \{0.44\} \end{array}$	-0.013* (0.007) [1,035,551] {.01}	$\begin{array}{c} 0.019^{***} \\ (0.006) \\ [550,302] \\ \{0.26\} \end{array}$	$\begin{array}{c} 0.022^{***} \\ (0.008) \\ [485,266] \\ \{0.25\} \end{array}$	$\begin{array}{c} -0.003 \\ (0.009) \\ [1,035,568] \\ \{.01\} \end{array}$	$\begin{array}{c} -0.018^{***} \\ (0.004) \\ [551,073] \\ \{0.17\} \end{array}$	$\begin{array}{c} -0.007^{*} \\ (0.004) \\ [486,064] \\ \{0.17\} \end{array}$	$\begin{array}{c} -0.011^{**} \\ (0.005) \\ [1,037,137] \\ \{0\} \end{array}$
Second-Year Dropout	$\begin{array}{c} -0.013^{**} \\ (0.006) \\ [276,309] \\ \{0.12\} \end{array}$	$\begin{array}{c} -0.016^{***} \\ (0.006) \\ [245,082] \\ \{0.14\} \end{array}$	$\begin{array}{c} 0.003 \\ (0.008) \\ [521,391] \\ \{02\} \end{array}$	$\begin{array}{c} -0.041^{***} \\ (0.013) \\ [158,711] \\ \{0.11\} \end{array}$	$\begin{array}{c} -0.057^{***} \\ (0.013) \\ [138,729] \\ \{0.13\} \end{array}$	$\begin{array}{c} 0.016 \\ (0.018) \\ [297,440] \\ \{02\} \end{array}$	$\begin{array}{c} -0.005 \\ (0.007) \\ [117,898] \\ \{0.21\} \end{array}$	$\begin{array}{c} -0.011^{*} \\ (0.007) \\ [106,582] \\ \{0.23\} \end{array}$	$\begin{array}{c} 0.007 \\ (0.010) \\ [224,480] \\ \{02\} \end{array}$
Cohort effects Control variables	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes

Table 9: Heterogeneity of Main Results by Student Sex

Notes: SUEST standard errors clustered at the class level in parentheses. Sample sizes in square brackets. Outcome sample means in curly braces. *** p<0.01, ** p<0.05, * p<0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include attendance rate, district and number of family members at different levels in the education system.

	HES			Universities			Vocational		
	Public (1)	Voucher (2)	Difference (3)	Public (4)	Voucher (5)	Difference (6)	Public (7)	Voucher (8)	Difference (9)
Immediate Enrollment	$\begin{array}{c} 0.002 \\ (0.006) \\ [530,018] \\ \{0.46\} \end{array}$	$\begin{array}{c} -0.005 \\ (0.004) \\ [823,962] \\ \{0.54\} \end{array}$	$\begin{array}{c} 0.007 \\ (0.007) \\ [1,353,980] \\ \{08\} \end{array}$	$\begin{array}{c} 0.010 \\ (0.008) \\ [530,018] \\ \{0.24\} \end{array}$	$\begin{array}{c} 0.028^{***} \\ (0.005) \\ [823,962] \\ \{0.33\} \end{array}$	-0.018* (0.010) [1,353,980] {09}	-0.008 (0.005) [530,018] {0.23}	$\begin{array}{c} -0.033^{***} \\ (0.004) \\ [823,962] \\ \{0.21\} \end{array}$	0.025^{***} (0.007) [1,353,980] $\{.02\}$
Two-Year Enrollment	$\begin{array}{c} 0.007 \\ (0.008) \\ [402,810] \\ \{0.40\} \end{array}$	$\begin{array}{c} 0.016^{***} \\ (0.005) \\ [632,741] \\ \{0.48\} \end{array}$	$\begin{array}{c} -0.009 \\ (0.009) \\ [1,035,551] \\ \{08\} \end{array}$	$\begin{array}{c} 0.010 \\ (0.010) \\ [402,815] \\ \{0.21\} \end{array}$	$\begin{array}{c} 0.025^{***} \\ (0.006) \\ [632,753] \\ \{0.29\} \end{array}$	$\begin{array}{c} -0.015 \\ (0.012) \\ [1,035,568] \\ \{08\} \end{array}$	$\begin{array}{c} -0.004 \\ (0.005) \\ [403,430] \\ \{0.18\} \end{array}$	$\begin{array}{c} -0.013^{***} \\ (0.004) \\ [633,707] \\ \{0.17\} \end{array}$	0.009 (0.006) [1,037,137] $\{.01\}$
Second-Year Dropout	-0.007 (0.008) [185,603] $\{0.15\}$	$\begin{array}{c} -0.020^{***} \\ (0.006) \\ [335,788] \\ \{0.12\} \end{array}$	$\begin{array}{c} 0.013 \\ (0.009) \\ [521,391] \\ \{.03\} \end{array}$	$\begin{array}{c} -0.055^{***} \\ (0.017) \\ [94,366] \\ \{0.13\} \end{array}$	$\begin{array}{c} -0.050^{***} \\ (0.011) \\ [203,074] \\ \{0.11\} \end{array}$	-0.005 (0.020) [297,440] {.02}	$\begin{array}{c} -0.001 \\ (0.008) \\ [91,470] \\ \{0.23\} \end{array}$	$\begin{array}{c} -0.012^{*} \\ (0.006) \\ [133,010] \\ \{0.21\} \end{array}$	$\begin{array}{c} 0.011 \\ (0.011) \\ [224,480] \\ \{.02\} \end{array}$
Cohort effects Control variables	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes

Table 10: Heterogeneity of Main Results by School Type

Notes: SUEST standard errors clustered at the class level in parentheses. Sample sizes in square brackets. Outcome sample means in curly braces. *** p<0.01, ** p<0.05, * p<0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include attendance rate, district and number of family members at different levels in the education system. Figure A.1: Outcomes over Time by Eligibility

	Immediate Enrollment				Two-Year Enrollment				Second-Year Dropout			
	Unive	rsities	Voca	tional	Unive	ersities	Vocat	tional	Unive	rsities	Vocat	ional
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Eligible \times cohort 2007	-0.016 (0.010)	-0.017^{*} (0.010)	$\begin{array}{c} 0.003 \\ (0.006) \end{array}$	$0.004 \\ (0.006)$								
Eligible \times cohort 2009	-0.015 (0.010)	-0.015 (0.010)	$0.008 \\ (0.006)$	$0.008 \\ (0.006)$	-0.001 (0.009)	-0.001 (0.009)	-0.009^{*} (0.005)	-0.009* (0.005)	-0.002 (0.015)	-0.003 (0.015)	$\begin{array}{c} 0.010 \\ (0.009) \end{array}$	$\begin{array}{c} 0.010 \\ (0.009) \end{array}$
Eligible \times cohort 2010	-0.014 (0.010)	-0.015 (0.010)	0.014^{**} (0.006)	0.015^{**} (0.006)								
Eligible \times cohort 2011					$\begin{array}{c} 0.013 \\ (0.010) \end{array}$	$\begin{array}{c} 0.014 \\ (0.010) \end{array}$	-0.009^{*} (0.005)	-0.009^{*} (0.005)	-0.033^{**} (0.015)	-0.049^{***} (0.015)	$\begin{array}{c} 0.002 \\ (0.009) \end{array}$	-0.002 (0.008)
Eligible \times cohort 2012	$\begin{array}{c} 0.013 \\ (0.009) \end{array}$	$\begin{array}{c} 0.011 \\ (0.009) \end{array}$	-0.018^{***} (0.006)	-0.016^{***} (0.006)	$\begin{array}{c} 0.027^{***} \\ (0.009) \end{array}$	$\begin{array}{c} 0.026^{***} \\ (0.009) \end{array}$	-0.018^{***} (0.005)	-0.018^{***} (0.005)	-0.054^{***} (0.015)	-0.057^{***} (0.015)	-0.004 (0.009)	-0.007 (0.008)
Eligible \times cohort 2013	$\begin{array}{c} 0.015 \\ (0.009) \end{array}$	$\begin{array}{c} 0.012 \\ (0.009) \end{array}$	-0.019^{***} (0.007)	-0.018^{***} (0.007)	$\begin{array}{c} 0.024^{***} \\ (0.009) \end{array}$	0.021^{**} (0.009)	-0.015^{***} (0.006)	-0.015^{***} (0.006)	-0.060^{***} (0.016)	-0.057^{***} (0.015)	-0.003 (0.008)	-0.010 (0.008)
Eligible \times cohort 2014	0.017^{*} (0.010)	$\begin{array}{c} 0.016 \\ (0.010) \end{array}$	-0.026^{***} (0.007)	-0.025^{***} (0.007)	$\begin{array}{c} 0.026^{***} \\ (0.009) \end{array}$	$\begin{array}{c} 0.025^{***} \\ (0.010) \end{array}$	-0.024^{***} (0.006)	-0.024^{***} (0.006)	-0.058^{***} (0.017)	-0.038^{**} (0.017)	$\begin{array}{c} 0.013 \\ (0.008) \end{array}$	$0.006 \\ (0.008)$
Eligible \times cohort 2015	$\begin{array}{c} 0.011 \\ (0.009) \end{array}$	$\begin{array}{c} 0.009 \\ (0.009) \end{array}$	-0.021^{***} (0.007)	-0.020^{***} (0.007)								
Eligible	0.302^{***} (0.007)	0.283^{***} (0.007)	-0.036^{***} (0.004)	-0.035^{***} (0.004)	0.270^{***} (0.007)	0.250^{***} (0.007)	$\begin{array}{c} 0.014^{***} \\ (0.004) \end{array}$	$\begin{array}{c} 0.012^{***} \\ (0.004) \end{array}$	-0.220^{***} (0.011)	-0.155^{***} (0.011)	-0.148*** (0.006)	-0.122^{***} (0.006)
Cohort 2007	$\begin{array}{c} 0.024^{***} \\ (0.003) \end{array}$	0.023^{***} (0.004)	-0.040*** (0.006)	-0.043^{***} (0.005)								
Cohort 2009	$\begin{array}{c} 0.002 \\ (0.003) \end{array}$	$\begin{array}{c} 0.002 \\ (0.003) \end{array}$	-0.027^{***} (0.006)	-0.028^{***} (0.005)	$\begin{array}{c} 0.002\\ (0.002) \end{array}$	$\begin{array}{c} 0.001 \\ (0.003) \end{array}$	-0.002 (0.004)	-0.001 (0.004)	$0.002 \\ (0.015)$	$\begin{array}{c} 0.004 \\ (0.015) \end{array}$	-0.022** (0.009)	-0.026*** (0.008)
Cohort 2010	-0.002 (0.003)	$0.000 \\ (0.003)$	-0.018^{***} (0.006)	-0.019^{***} (0.005)								
Cohort 2011					-0.001 (0.002)	-0.003 (0.003)	0.009^{**} (0.004)	0.010^{**} (0.004)	0.039^{***} (0.015)	0.066^{***} (0.015)	$\begin{array}{c} 0.011 \\ (0.009) \end{array}$	0.022^{***} (0.008)
Cohort 2012	$\begin{array}{c} 0.003 \\ (0.003) \end{array}$	$\begin{array}{c} 0.005 \\ (0.003) \end{array}$	$\begin{array}{c} 0.028^{***} \\ (0.005) \end{array}$	$\begin{array}{c} 0.031^{***} \\ (0.005) \end{array}$	-0.000 (0.002)	$\begin{array}{c} 0.001 \\ (0.003) \end{array}$	$\begin{array}{c} 0.031^{***} \\ (0.004) \end{array}$	0.036^{***} (0.004)	0.060^{***} (0.016)	0.066^{***} (0.015)	-0.003 (0.009)	$\begin{array}{c} 0.002\\ (0.009) \end{array}$
Cohort 2013	-0.006** (0.002)	-0.005 (0.003)	0.059^{***} (0.006)	$\begin{array}{c} 0.059^{***} \\ (0.005) \end{array}$	-0.007^{***} (0.002)	-0.008** (0.003)	0.053^{***} (0.005)	0.054^{***} (0.004)	0.075^{***} (0.016)	0.087^{***} (0.016)	-0.006 (0.009)	0.019^{**} (0.008)
Cohort 2014	-0.012^{***} (0.002)	-0.010^{***} (0.003)	0.069^{***} (0.006)	$\begin{array}{c} 0.071^{***} \\ (0.006) \end{array}$	-0.010^{***} (0.002)	-0.009*** (0.003)	$\begin{array}{c} 0.064^{***} \\ (0.005) \end{array}$	0.067^{***} (0.005)	0.065^{***} (0.017)	0.061^{***} (0.017)	-0.020** (0.009)	$0.008 \\ (0.008)$
Cohort 2015	-0.012^{***} (0.002)	-0.010^{***} (0.003)	0.062^{***} (0.006)	0.063^{***} (0.005)								
Student district fixed effects	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
Control variables	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
Observations	1,353,980	1,353,980	1,353,980	1,353,980	1,035,568	1,035,568	1,037,137	1,037,137	301,826	297,440	224,857	224,480
$\label{eq:pre-trends} \ p\mbox{-value}$	0.295	0.260	0.126	0.113	0.900	0.955	0.098	0.072	0.913	0.858	0.243	0.241

Table A.1: Dynamics Excluding Year 2008

Notes: Clustered standard errors at the class level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include gender, attendance rate, district and number of family members at different levels in the education system. Control group size accounts for the number of ineligible individuals in the exposure period, while Outcome mean refers to the mean of the dependent variable of those individuals.

		HES		1	Universities			Vocational		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Immediate Enrollment										
Eligible \times exposed (placebo)	0.006 (0.008)	$0.006 \\ (0.008)$	$\begin{array}{c} 0.007 \\ (0.008) \end{array}$	$0.000 \\ (0.009)$	$0.000 \\ (0.009)$	$\begin{array}{c} 0.002 \\ (0.009) \end{array}$	$0.006 \\ (0.006)$	$0.006 \\ (0.006)$	$0.005 \\ (0.006)$	
Observations	307,308	307,308	307,308	307,308	307,308	307,308	307,308	307,308	307,308	
Two-Year Enrollment										
Eligible \times exposed (placebo)	0.002 (0.008)	$0.002 \\ (0.008)$	$0.003 \\ (0.008)$	-0.004 (0.009)	-0.004 (0.009)	-0.003 (0.009)	$0.006 \\ (0.005)$	$0.006 \\ (0.005)$	$0.005 \\ (0.005)$	
Observations	306,858	306,858	306,858	306,859	306,859	306,859	307,307	307,307	307,307	
Second-Year Dropout										
Eligible \times exposed (placebo)	0.002 (0.008)	$0.002 \\ (0.008)$	$0.008 \\ (0.008)$	$0.009 \\ (0.015)$	$0.009 \\ (0.015)$	$0.021 \\ (0.015)$	-0.007 (0.009)	-0.007 (0.009)	-0.001 (0.009)	
Observations	143,421	143,421	140,619	89,088	89,088	86,634	54,507	54,507	54,152	
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	

Table A.2: Placebo Reform Excluding Year 2008

Notes: Clustered standard errors at the class level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Control variables are the same as in Tables 3, 4, and 5.

	HES				Universities		Vocational		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Two-Year Enrollment	_								
Eligible \times exposed (2nd year)	$\begin{array}{c} 0.014^{***} \\ (0.005) \end{array}$	$\begin{array}{c} 0.013^{***} \\ (0.005) \end{array}$	0.011^{**} (0.005)	0.022^{***} (0.006)	0.022^{***} (0.006)	0.021^{***} (0.006)	-0.011^{***} (0.003)	-0.013^{***} (0.003)	-0.012^{***} (0.003)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	$1,\!035,\!551$	$1,\!035,\!551$	$1,\!035,\!551$	1,035,568	1,035,568	1,035,568	$1,\!037,\!137$	$1,\!037,\!137$	$1,\!037,\!137$
Cragg-Donald	10,761,691	$10,\!763,\!467$	$10,\!576,\!213$	$10,\!762,\!107$	10,763,884	$10,\!576,\!618$	$10,\!783,\!649$	$10,\!785,\!436$	$10,\!597,\!726$
Second-Year Dropout	_								
Eligible \times exposed (2nd year)	-0.014^{***} (0.005)	-0.014^{***} (0.005)	-0.014^{***} (0.005)	-0.049^{***} (0.010)	-0.049^{***} (0.010)	-0.050^{***} (0.009)	-0.003 (0.005)	-0.003 (0.005)	-0.008 (0.005)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	$526,\!147$	$526,\!147$	$521,\!391$	$301,\!826$	$301,\!826$	$297,\!440$	$224,\!857$	$224,\!857$	$224,\!480$
Cragg-Donald	40,887,766	$40,\!887,\!893$	$38,\!270,\!537$	$11,\!742,\!481$	$11,\!741,\!672$	$10,\!985,\!932$	$22,\!570,\!275$	$22,\!567,\!295$	$21,\!934,\!238$

Table B.1: IV-DiD Regressions for Two-Year Outcomes

Notes: 2SLS estimates instrumenting eligible_{it} with eligible_{2it}. Clustered standard errors at the class level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Control variables are the same as in Tables 3, 4, and 5.

	Two-Year Enrollment						Second-Year Dropout					
		All students			$\mathrm{GPA} < 5.3$			All students		GPA < 5.3		
	HES (1)	Universities (2)	Vocational (3)	HES (4)	Universities (5)	Vocational (6)	HES (7)	Universities (8)	Vocational (9)	HES (10)	Universities (11)	Vocational (12)
Difference	0.024^{***} (0.009)	0.024^{***} (0.008)	0.001 (0.008)	0.046^{**} (0.019)	0.033^{**} (0.014)	0.005^{**} (0.015)	-0.009** (0.007)	-0.000^{**} (0.014)	-0.025^{**} (0.011)	-0.025^{**} (0.017)	-0.020^{**} (0.031)	-0.051^{**} (0.025)
Exposed	0.097^{***} (0.005)	0.142^{***} (0.005)	-0.051^{***} (0.005)	0.095^{***} (0.009)	0.088^{***} (0.007)	-0.002^{***} (0.009)	-0.008** (0.004)	-0.019^{**} (0.008)	0.001^{***} (0.006)	-0.029^{***} (0.010)	-0.009^{***} (0.019)	-0.038^{**} (0.016)
Unexposed	0.073^{***} (0.008)	0.117^{***} (0.007)	-0.052^{***} (0.006)	0.049^{***} (0.017)	0.054^{***} (0.011)	-0.007 (0.012)	0.001^{***} (0.006)	-0.019^{*} (0.011)	0.027^{***} (0.009)	-0.004*** (0.014)	0.010^{***} (0.025)	0.013 (0.019)
Bandwidth												
Exposed	58.077	37.934	38.461	64.812	51.634	48.703	54.348	51.297	46.782	50.644	54.499	31.156
Unexposed	53.155	50.305	48.858	35.814	44.375	45.506	50.402	49.227	50.556	41.813	38.712	50.574
Observations												
Exposed	$133,\!494$	88,264	89,627	$38,\!607$	31,115	29,424	$69,\!669$	30,248	32,749	15,517	6,386	5,968
Unexposed	$61,\!536$	58,343	56,759	11,691	14,464	$14,\!832$	28,947	13,368	$15,\!330$	6,267	2,471	4,341

Table B.2: IV-Diff-in-Disc Design for Two-Year Outcomes

Notes: Optimal bandwidths separately selected by exposure. Triangular kernel is used in local linear regressions. Standard errors clustered at the class level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure B.1: Immediate and Two-Year-Best PSU Scores

	Two-year eligibility						
	Yes	No	Total				
Immediate eligibility							
Yes	77.27%	0%	77.27%				
No	0.76%	21.97%	22.73%				
Total	78.03%	21.97%	100.00%				

Table B.3: Immediate vs Two-Year Eligibility

Table C.2: Evidence of Female Del	lay
-----------------------------------	-----

	Repe	etition	Impro	vement
	All students (1)	Non-enrolled (2)	All students (3)	Non-enrolled (4)
$Female \times exposed$	0.008^{**} (0.003)	0.034^{***} (0.007)	$0.005 \\ (0.005)$	-0.013^{**} (0.005)
Female	0.029^{***} (0.002)	0.060^{***} (0.005)	0.024^{***} (0.003)	0.006^{*} (0.003)
Exposed	-0.009*** (0.003)	0.004 (0.007)	-0.077^{***} (0.004)	-0.024^{***} (0.004)
Observations	1,023,720	452,286	196,854	155,145

Notes: Clustered standard errors at the class level in parentheses. *** p<0.01, ** p<0.05, ** p<0.05, ** p<0.1. Repetition and Improvement are indicator variables. All students comprises the sample of students who sat the PSU immediately after high school graduation. Non-enrolled is the subsample of students that did not enroll immediately. Cohort 2015 is excluded because we do not have access to PSU scores for year 2016.

B IV Details

Our IV linear regression model is given by the structural equation

$$\underbrace{y_{it}}_{1\times 1} = \underbrace{x'_{it}}_{K\times 1} \underbrace{\lambda}_{K\times 1} + \underbrace{\eta_{it}}_{1\times 1}$$
(B.1)

and the first stage

$$\underbrace{\boldsymbol{x}_{2it}}_{K_2 \times 1} = \underbrace{\boldsymbol{\Gamma}}_{K_2 \times L} \underbrace{\boldsymbol{z}_{it}}_{L \times 1} + \underbrace{\boldsymbol{\nu}_{it}}_{K_2 \times 1}$$
(B.2)

where

$$\underbrace{\boldsymbol{x}_{it}}_{K\times 1} = \begin{pmatrix} \underbrace{\boldsymbol{x}_{1it}}_{K_1\times 1} \\ \underbrace{\boldsymbol{x}_{2it}}_{K_2\times 1} \end{pmatrix} \quad \text{and} \quad \boldsymbol{z}_{it} = \begin{pmatrix} \underbrace{\boldsymbol{x}_{1it}}_{K_1\times 1} \\ \underbrace{\boldsymbol{z}_{2it}}_{L_2\times 1} \end{pmatrix}$$

which $K = K_1 + K_2$ and $L = K_1 + L_2 \ge K$.

Partition

$$\prod_{K_2 \times L} = \begin{bmatrix} \Gamma_1 & \Gamma_2 \\ K_2 \times K_1 & K_2 \times L_2 \end{bmatrix} \quad \text{and} \quad \underbrace{\lambda}_{K \times 1} = \begin{bmatrix} \lambda_1 \\ K_1 \times 1 \\ \lambda_2 \\ K_2 \times 1 \end{bmatrix}$$

and rewrite Equation (B.2) as

$$\underbrace{\boldsymbol{x}_{2it}}_{K_2 \times 1} = \begin{bmatrix} \Gamma_1 & \Gamma_2 \\ K_2 \times K_1 & K_2 \times L_2 \end{bmatrix} \begin{pmatrix} \underbrace{\boldsymbol{x}_{1it}}_{K_1 \times 1} \\ \underbrace{\boldsymbol{z}_{2it}}_{L_2 \times 1} \end{pmatrix} + \underbrace{\boldsymbol{\nu}_{it}}_{K_2 \times 1}.$$
(B.2')

Now, plugging Equation (B.2') into (B.1), we obtain

$$\underbrace{y_{it}}_{1\times 1} = \underbrace{\left[x'_{1it} \quad \left(x'_{1it} \Gamma'_{1} + z'_{2it} \Gamma'_{2} + \nu'_{it} \right) \right]}_{1\times K} \underbrace{\left[\begin{array}{c} \lambda_{1} \\ \lambda_{2} \end{array} \right]}_{K\times 1} + \underbrace{\eta_{it}}_{1\times 1} \\ = \underbrace{x'_{1it}}_{1\times K_{1}} \underbrace{\left(\lambda_{1} + \Gamma'_{1} \lambda_{2} \right)}_{K_{1}\times 1} + \underbrace{z'_{2it}}_{1\times L_{2}} \underbrace{\Gamma'_{2} \lambda_{2}}_{L_{2}\times 1} + \underbrace{\nu'_{it} \lambda_{2} + \eta_{it}}_{1\times 1} \\ \equiv \underbrace{x'_{1it}}_{1\times K_{1}} \underbrace{\beta_{1}}_{K_{1}\times 1} + \underbrace{z'_{2it}}_{1\times L_{2}} \underbrace{\beta_{2}}_{L_{2}\times 1} + \underbrace{\varepsilon_{it}}_{1\times 1} .$$

Finally, letting

$$\underbrace{\boldsymbol{\beta}}_{L\times 1} \equiv \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\kappa}_1 \times 1 \\ \boldsymbol{\beta}_2 \\ \boldsymbol{L}_2 \times 1 \end{bmatrix},$$

we obtain the reduced form

$$\underbrace{y_{it}}_{1\times 1} = \underbrace{z'_{it}}_{1\times L} \underbrace{\beta}_{L\times 1} + \underbrace{\varepsilon_{it}}_{1\times 1}.$$
(1)

Notice that

$$\mathbb{E}\big[\underbrace{\boldsymbol{z}_{it}}_{L\times 1}\underbrace{\boldsymbol{\nu}_{it}'}_{1\times K_2}\big] = \underbrace{\boldsymbol{0}}_{L\times K_2}$$

by construction since Equation (B.2) is a linear projection. Therefore,

$$\mathbb{E}[\boldsymbol{z}_{it}\,\varepsilon_{it}]=0\implies\mathbb{E}[\boldsymbol{z}_{it}\,\eta_{it}]=0$$

since

$$\mathbb{E}[\boldsymbol{z}_{it}\,\varepsilon_{it}] = \mathbb{E}[\boldsymbol{z}_{it}\,\boldsymbol{\nu}_{it}']\,\boldsymbol{\lambda}_2 + \mathbb{E}[\boldsymbol{z}_{it}\,\eta_{it}]$$

by definition.

In our DiD-IV setup, the parallel trends assumption underlying our main specification—given by Equation (1)—implies that $\mathbb{E}[\mathbf{z}_{it} \varepsilon_{it}] = 0$. Thus, by the argument above, the independence/ignorability requirement for a valid instrument is satisfied for our excluded instruments \mathbf{z}_{2it} under the parallel trends assumption.