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Abstract

A growing literature on monopsony in labor markets emphasizes idiosyncratic preferences

over differentiated jobs as a key source of market power, borrowing tools from industrial

organization to estimate firm-level labor supply elasticities. While promising, this discrete

choice approach —when applied to job applications data— typically assumes that each job

seeker applies to only one job. This assumption is at odds with observed behavior and

overlooks how a wage increase affects the supply of applications not only through substitution

across jobs, but also through its impact on the number of applications submitted. This

paper relaxes that assumption by extending the standard framework to allow for multiple

applications in a simultaneous search environment, where uncertainty about job offers induces

multiple-application behavior.

1 Introduction

This is not really an introduction. I just moved some incomplete paragraphs from the model section

to the introduction because I think these are things that should be discussed here.

Mirroring the case of product markets, the measurement and estimation of labor market power

is usually based on the identification of wage markdowns measuring the wedge between wages and

the marginal revenue product of labor that results from imperfect competition in the labor market.

While a part of the literature follows a direct approach to the estimation of wage markdowns
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leveraging production function estimation techniques and revenue data (e.g., Brooks et al., 2021;

Yeh et al., 2022; Mertens and Mottironi, 2023), this paper follows the tradition of estimating firm-

level labor supply elasticities (e.g., Dal Bó et al., 2013; Azar et al., 2022; Roussille and Scuderi,

2025).1 As discussed by Manning (2003, 2021), the key idea behind monopsony is that the labor

supply curve to an individual employer is less than perfectly elastic. The markdown at the firm

level is a function —typically the reciprocal— of this elasticity in a broad class of models of

monopsony power (Azar and Marinescu, 2024). . .

Card et al. (2018) and, more recently, Card (2022) advocate for the adoption of the industrial incomplete

paragraph

incomplete

paragraph

organization tradition of estimating discrete choice models of demand for differentiated products. . .

As discussed by Azar and Marinescu (2024), the setups of different articles estimating the firm- incomplete

paragraph

incomplete

paragraph

level labour supply elasticity focus on different parts of the process that determines the firm’s level

of employment. While it is important to note how this implies the need for a further transformation

of the estimates into labour supply elasticities, of equal importance is to note that models that

appropriately describe one part of the process might be inappropriate for another. INCLUDE

DIAGRAM! CITE AZAR, BERRY, MARINESCU (2022)! CITE HIRSCH ET AL (2022)!. . .

Figure 1: Timing of the recruitment process

Notes: Timeline of the recruitment process in a stylized labor market. Traditional discrete choice models

that allow at most one job to be chosen are well-suited for stage 4, where workers decide among final

job offers (see, e.g., Hirsch et al., 2022). However, when applied to stage 3, as in Azar et al. (2022),

these models miss a key feature of the economic environment: under job-offer uncertainty and costly

applications, job seekers optimally apply to multiple vacancies. Our framework captures this behavior.

1See Manning (2021) and Azar and Marinescu (2024) for an overview of both strands of the literature.
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Figure 2: Histogram of the number of applications per job seeker
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Source: Online job applications data from Trabajando.com covering the period 01jan2010−31dec2019.
Notes:   Censored at the 95th percentile. Sample size = 1,688,647 job seekers.

Notes: Histogram of the number of applications per job seeker on job board Trabajando.com over

the period January 1, 2010 to December 31, 2019. Censored at the 95th percentile. Sample size =

1,688,647 job seekers. DISCUSS IDENTIFICATION/DEFINITION OF SEARCH SPELLS! Multiple

applications are pervasive, motivating our portfolio-choice framework and distinguishing our approach

from single-application models

Need to re-do this graph, incorporating Alessandro’s feedback: It needs to be clear that it is not a mechanical

effect of multiple spells per job seeker/a timing issue. Maybe use the same sampling period as the empirical

application (a shorter period would alleviate the concern).

Also need to improve the visuals. For example, remove the Stata note and change the font.

2 A job differentiation model of labor supply

Consider a labor market where a finite set of firms f ∈ F each post a finite set J f of job vacancies. Need to

add more

intuitive

introduc-

tion and a

bit more

detail

Need to

add more

intuitive

introduc-

tion and a

bit more

detail

A finite set I of job seekers, with size I ≡ |I| decide where to apply among the J ≡ |J | vacancies
in the common choice set J ≡

󰁖
f∈F J f . Each vacancy j ∈ J is fully characterized by an offered

wage wj > 0, a (column) vector of job characteristics xj ∈ RK that we will assume observed by the

econometrician when discussing estimation in Sections 2.3 and 3.2, and a scalar index ξj capturing

other job characteristics that we will assume unobserved. Job characteristics (x′
j, ξj)

′ are fixed
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at this stage of the recruitment process, and firms compete in wages to attract workers. Since

our primary object of interest is the wage elasticity of the supply of job applications to the firm,

we abstract away as much as possible from modeling the demand side of the market and market

equilibrium.

2.1 Risky discrete choice and the job application portfolio problem

Consider the simultaneous search setting studied by Chade and Smith (2006), where each decision

maker solves a static portfolio choice problem. Job seeker i faces a finite set J consisting of J ≡ |J |
job vacancy advertisements and chooses a subset Ai ⊆ J of vacancies to apply to. The cost of

applications, ci(ni), depends only on the number of applications, ni ≡ |Ai|, where ci : N → R+

is increasing and convex with ci(0) = 0. Conditional on applying, the job seeker gets an offer

from job j with probability αij ∈ (0, 1]. Recruitment decisions are independent in the sense that

the events {j makes an offer to i | i applied to j} and {ℓ makes an offer to i | i applied to ℓ} are

independent for j, ℓ ∈ J , j ∕= ℓ. The job seeker can accept at most one offer.

In this setting, each job vacancy represents a risky option, and at most one option will be

exercised. Let j = 0 represent the outside option, corresponding to either unemployment or the

current job if employed. The ex post payoff of exercising option j is represented by Bernoulli utility

function ui : J ∪ {0} → R, with shorthand notation uij = ui(j). We rule out weakly dominated

(by the outside option) jobs by assuming uij ≥ ui0 for al j ∈ J , implying the job seeker accepts at

least one offer, if any.2 Thus, the outside option is exercised only when either every application in

Ai is rejected or no applications are made (Ai = ∅). Realization of any option in the application

portfolio depends on receiving an offer from that job and being rejected by every preferred job

application.

Let ri : P(J )×{1, . . . , J} → J identify the k–th most preferred job within portfolio A ⊆ J by

ri(A, k) ∈ A, with shorthand notation rAik. Here, k ∈ {1, . . . , |A|} and P(S) denotes the power set

of set S. We assume that preferences are strict, meaning ri(·, ·) is indeed a function (as opposed

to a correspondence) and uiri(J ,1) > · · · > uiri(J ,J).
3 Each application portfolio A ⊆ J gives rise

to a lottery over state space J ∪ {0}, where outcomes j ∈ J represent exercising option j —i.e.,

getting the job— and outcome j = 0 corresponds to exercising the outside option. The lottery

assigns positive probability only to jobs in the application portfolio, j ∈ A, and to the outside

option, j = 0. As discussed above, option j ∈ A is exercised if and only if the job seeker (i) receives

2Chade and Smith (2006) impose the stronger assumption that αijuij − ci(1) > ui0 for all j ∈ J , which further

implies that at least one application is made. In contrast, we allow job seekers to make no applications by choosing

Ai = ∅.
3Moreover, for fixed A ⊆ J , ri(A, ·) is a bijection from {1, . . . , |A|} to A. This implies the existence of an

inverse r−1
i (A, j) that returns the position of alternative j ∈ A in the ranking of the alternatives in A.
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an offer from job j, and (ii) is rejected by every job in the portfolio that is (ex post) preferred to

j. Therefore, if j is ranked in the k–th position among m ∈ A, then the probability of exercising

this option is given by

pi(A, j) = αij

k−1󰁜

ℓ=1

󰀃
1− αiri(A,ℓ)

󰀄
. (1)

Similarly, the probability of exercising the outside option is4

pi(A, 0) =
󰁜

m∈A

(1− αim) . (2)

Let Ui : P(J ) → R represent the (ex ante) von Neumann–Morgenstern expected utility of

the lottery induced by portfolio A ⊆ J and, without loss of generality, normalize ui0 = 0. Then,

considering the cost of applications —which is incurred in any event—,

Ui(A) =
n󰁛

k=1

uiri(A,k) αiri(A,k)

k−1󰁜

ℓ=1

󰀃
1− αiri(A,ℓ)

󰀄
− ci(n), (3)

where n = |A| is the size of portfolio A. The resulting utility maximization problem,

max
A⊆J

Ui(A), (4)

is a complex combinatorial optimization problem. In principle, it involves computation and com-

parison of the expected utilities from the |P(J )| = 2J feasible application portfolios that can be

chosen from J (including the empty set A = ∅). However, Chade and Smith (2006) exploit the

downward-recursive structure of this class of portfolio choice problem to show that their marginal

improvement algorithm (MIA) efficiently finds the optimal portfolio in J(J + 1)/2 = O(J2) steps.

The MIA is a greedy algorithm that starts by identifying the best singleton portfolio, then finds

the best alternative to add to the best singleton portfolio to form the best portfolio of size two,

and so on until the next best portfolio addition decreases expected utility (see Appendix A for

details).

The discrete choice methods typically used in the estimation of demand for differentiated prod-

ucts rely on revealed (or sometimes stated) preference in the sense that the (actual or hypothetical)

ex ante choice of alternative j over alternative ℓ truthfully reveals that the decision maker prefers

j to ℓ ex post. This is not generally true in our simultaneous search setting. In particular, j ∈ Ai

and ℓ /∈ Ai ∕=⇒ uij > uiℓ. In a special case of this model, however, a revealed-preference structure

emerges by imposing the following simplifying assumptions, which are maintained throughout the

paper unless stated otherwise.

Assumption 1. Homogeneous admission probabilities: αij = αi ∈ (0, 1), ∀j ∈ J .

4Equation (2) is a special case of Equation (1) since every inside option is preferred to the outside option and

the outside option is not risky (αi0 ≡ 1). It can be verified that these probabilities sum to one over A ∪ {0}.
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Assumption 2. Constant marginal cost of applications: ci(|A|) = γi |A| , ∀A ⊆ J , where γi > 0.

Under Assumption 1, the model retains a sufficient degree of uncertainty to induce job seekers

to make multiple applications, while the mechanism preventing preference revelation disappears as

the order of the (ex ante) expected values of the risky options coincides with the ex-post preference

order: αiuij > αiuiℓ ⇐⇒ uij > uiℓ. Therefore, for any currently available pair j, ℓ such that

uij > uiℓ, the MIA will choose j over ℓ for the next optimal portfolio addition in any given iteration,

giving portfolio choice the revealed-preference property j ∈ Ai and ℓ /∈ Ai =⇒ uij > uiℓ. This

intuitive result follows as a corollary to Lemma 2 of Chade and Smith (2006). Further imposing

Assumption 2 yields a stopping rule that determines the size of the optimal portfolio as a function

of preferences and the parameters αi and γi. This stopping rule follows directly from the MIA

stopping rule. Proposition 1 below formalizes these insights. The resulting choice rule can be

combined with an additive random utility model for the ex post utilities {uij}j∈J to produce a

tractable econometric model of portfolio choice.

Proposition 1. Under Assumptions 1 and 2, the portfolio choice model (3)–(4) reduces to a

two-stage choice rule comprising:

(i) Stopping rule: Determine optimal portfolio size ni following the rule

ni = max

󰀝󰁱
n ∈ {1, . . . , J} : ui,ri(J ,n) ≥

γi

αi (1− αi)
n−1

󰁲
∪ {0}

󰀞
. (5)

(ii) Choice of best ex post alternatives: Conditional on optimal portfolio size ni, choose the

optimal portfolio Ai of size ni by including the alternatives with the ni highest ex post utilities

such that

Ai =
󰁱
ri(J , 1), . . . , ri(J , ni)

󰁲
. (6)

Proof. See Appendix B.

It is easy to see that the two-step choice rule described in Proposition 1 can be equivalently

—and more compactly— represented as a one-step rule of the form

j ∈ Ai ⇐⇒ uij ≥
γi

αi(1− αi)r
−1
i (J ,j)−1

. (7)

However, the sequential representation will prove useful in estimation after specifying an additive

random utility model. We proceed to discuss this in more detail in Section 2.2 and ?? below.
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2.2 An additive random utility model for ex-post job preferences

We complete our model of the supply of applications to the firm by specifying a random util-

ity model (ARUM hereafter) for the Bernoulli utilities {uij}j∈J representing job seekers’ ex-post

preferences over the available vacancies. We impose a simple logit preference structure in order

to keep the model tractable while cleanly illustrating the mechanisms introduced by uncertainty

and the application portfolio problem discussed in Section 2.1. This approach has the advantage

of yielding closed-form solutions for the relevant choice probabilities —which are generalizations

of the well-known choice probability in the one-application setting—, but at the cost of imposing

restrictive assumptions on preference heterogeneity and substitution patterns as a consequence of

the independence of irrelevant alternatives (IIA) property. We further discuss these limitations

and compare the model to single-application benchmarks in Section 2.3.

To connect the portfolio-choice problem to observable data on job characteristics and wages, we

assume that each job seeker’s ex-post utilities are additively separable in a systematic component

and an idiosyncratic shock. This assumption yields a tractable job-differentiation structure while

capturing the key economic trade-off between hedging against job-offer uncertainty and costly

applications. Workers apply to jobs based on their mean utilities, but randomness in tastes and

outcomes still drives variation in portfolios. Formally, each job seeker i ∈ I faces the portfolio

choice problem described by Equations (3) and (4). The ex-post utility that the job seeker derives

from working in job j ∈ J takes the additively separable form

uij = δj + εij, (8)

where δj ∈ R is the deterministic component, or mean utility, and εij is a random taste shock

representing the idiosyncratic component of ex-post utility. Mean utility is linear in log-wage and

job characteristics:

δj = β ln (wj) + x′
jθ + ξj. (9)

Equations (8)–(9), together with Assumption 3 below, comprise the core of our logit ARUM

structure.5

Assumption 3. The idiosyncratic taste shocks εij are independent and identically distributed

draws from a standard type-1 extreme value distribution, with cumulative distribution function

Fε(x) = exp (− exp (−x)) for x ∈ R.

5It is possible, at the risk of reduced tractability, to derive richer, more flexible models by combining a more

general structure for Equation (8) with different distributional assumptions in place of Assumption 3. Such general-

izations are out of the scope of this paper and are thus left for future research. See, for example, Section 3 of Berry

and Haile (2021), Chapters 2–6 of Train (2009), or Chapter 2 of Aguirregabiria (2021) for detailed discussions in

the setting where only one alternative is selected.
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Given this logit structure, we can derive closed-form expressions —up to integrating out job-

seeker heterogeneity in the uncertainty and cost parameters— for the supply of job applications

at the vacancy and firm levels. To simplify notation, let J = {1, . . . , J} so we can use vector

notation for quantities such as δ = (δ1, . . . , δJ)
′ ∈ RJ .6 The expected number of applications to

job j in our model is given by

qj(δ) = I

J󰁛

n=1

sj|n(δ)sn(δ), (10)

where

sj|n(δ) =
J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

exp (δj)󰁓
ℓ∈{j}∪A

exp (δℓ)
+

|Bj\A|󰁛

s=1

(−1)s
󰁛

B∈Rs(Bj\A)

exp (δj)󰁓
ℓ∈{j}∪A∪B

exp (δℓ)
(11)

is the probability that job j belongs to the application portfolio conditional on portfolio size,

P (j ∈ Ai | ni = n) for n ∈ {1, . . . , J}, Bj ≡ J \ {j} is the set of jobs excluding j, and Rk(S) =

{σ ⊆ S : |S| = k} is the set of all size-k subsets of set S.7 The conditional probability mass

function (pmf) of portfolio size ni —i.e., the number of applications— given admission probability

αi and marginal cost of application γi, P (ni = n | αi, γi), is

sn|α,γ(δ,αi, γi) =
J󰁛

s=0

󰁛

A∈Rs(J )

󰁜

ℓ∈A

󰁫
Fε

󰀃
ψn+1
i

󰀄exp (δℓ) − Fε

󰀃
ψn
i

󰀄exp (δℓ)
󰁬

(12)

󰁛

t∈τsn

󰁛

B∈Rt(J\A)

Fε

󰀃
ψn
i

󰀄󰁓
p∈B exp (δp)

󰁜

q∈J\(A∪B)

󰁫
1− Fε

󰀃
ψn+1
i

󰀄exp (δq)
󰁬

for n ∈ {1, . . . , J − 1}, where τ sn = {max (J − n− s, 0), . . . ,min (J − n, J − s)} is a set of consec-

utive natural numbers, and

ψn
i =

γi
αi(1− αi)n−1

, n ∈ {1, . . . , J} (13)

is shorthand for the thresholds in part (i) of Proposition 1. For the extreme cases n = 0 and n = J ,

the conditional pmf is

s0|α,γ(δ,αi, γi) = Fε

󰀃
ψ1
i

󰀄󰁓
ℓ∈J exp (δℓ) (14)

6Alternatively, fix a bijection j : J → {1, . . . , J} such that δ = (δj−1(1), . . . , δj−1(J))
′ is simply the permutation

of {δj}j∈J induced by j(·). So far, we have left the nature of job identities J unspecified for clarity when defining

mappings from jobs to rankings of jobs. It will be useful to work with vectors in what follows, so it is convenient

to fix an ordering of J .
7Note that (i) sj|J(δ) = 1, consistent with the trivial fact that P (j ∈ Ai | ni = J) = 1; (ii) sj|1(δ) =

exp (δj)/
󰁓

ℓ∈J exp (δℓ) coincides with the well-known choice probability in the multinomial logit model; (iii)
󰁓

j∈J sj|n(δ) = n, consistent with the conditioning event that n alternatives are chosen; and (iv) sj|n(δ) increases

monotonically with n, consistent with the fact that, for any job seeker, the n most preferred alternatives include

the n− 1 most preferred alternatives.
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and

sJ |α,γ(δ,αi, γi) = 1−
J󰁛

k=1

󰁛

A∈Rk(J )

Fε

󰀃
ψJ
i

󰀄󰁓
ℓ∈A exp (δℓ)

󰁜

m∈J\A

󰁫
1− Fε

󰀃
ψJ
i

󰀄exp (δm)
󰁬
, (15)

respectively. The corresponding unconditional pmf, P (ni = n) for n ∈ {0, . . . , J}, is

sn(δ) =

󰁝 ∞

−∞

󰁝 ∞

−∞
sn|α,γ(δ,αi, γi)dFα(αi)dFγ(γi). (16)

See Appendix C for a full derivation.

The elasticity of the supply of applications to job j ∈ J with respect to the wage of vacancy

ℓ ∈ J answers the question “If the wage offered by job ℓ increases by one percent, what is the

percent increase in the number of applications to job j?” and is given by

ηqj ,wℓ
=

1

qj(δ)

󰀥
I

J󰁛

n=1

∂sj|n(δ)

∂δℓ
sn(δ) + sj|n(δ)

∂sn(δ)

∂δℓ

󰀦
β. (17)

Our object of interest is the own-wage elasticity of the supply of applications to the firm. This

quantity answers the question “If the firm raises the wages it offers for all its vacancies by one

percent, what is the percent increase in the total number of applications it receives?”. Since the

total number of applications to firm f ∈ F posting job vacancies J f ,

qf (δ) =
󰁛

j∈J f

qj(δ), (18)

is simply the sum of the supply of applications to each of its posted vacancies, its elasticity is a

weighted average of the corresponding vacancy-level elasticities:

ηqf ,wf =
1

qf (δ)

󰁛

ℓ∈J f

󰁛

j∈J f

qj(δ)ηqj ,wℓ
. (19)

See Appendix D.1 for a derivation of the vacancy- and firm-level elasticities, and Appendix D.2

for closed-form expressions for the partial derivatives of sj|n(·) and sn(·) —up to integration over

Fα(·)× Fγ(·).

2.3 Implications and limitations

Differences with single-application models. Having developed the model and derived the

implied supply of applications and own-wage elasticity, we now compare our framework to single-

application benchmarks. These comparisons clarify the mechanisms driving differences in applica-

tion behavior and wage elasticities.

The textbook multinomial logit (MNL) model assigns an idiosyncratic taste shock to the outside

option. In contrast, our framework treats the outside option deterministically and assumes that
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all considered vacancies are at least as attractive as the status quo. Our treatment of the outside

option is more natural in the context of job applications: rational job seekers would never consider

applying to vacancies that are worse than their current position, be it a job or unemployment.

To illustrate the implications of allowing multiple applications, we benchmark our model against

two natural alternatives: (i) an MNL model with a deterministic, ex-post dominated outside

option, and (ii) a restricted version of our model in which job seekers can submit at most one

application. Comparing these models highlights how portfolio choice affects both the expected

number of applications per vacancy and the implied wage elasticities.

Baseline model. To facilitate cleaner comparisons with single-application benchmarks, we focus

on a simplified version of our model in which we abstract away from job-seeker heterogeneity by

setting αi = α ∈ (0, 1) and γi = γ > 0 for all i ∈ I. Under these degenerate distributions for

the uncertainty and cost parameters, the unconditional pmf of the number of applications per job

seeker in Equation (16) coincides with the conditional pmf in Equations (12), (14) and (15). In

this case, the thresholds in Equation (13) simplify to

ψn =
γ

α(1− α)n−1
.

The expected number of applications received by each job vacancy and the conditional application

shares are then given by Equations (10) and (11), respectively. We use this baseline model as

the point of comparison for the deterministic-outside option MNL benchmark and the restricted

single-application version of our framework introduced below.

Deterministic-outside MNL benchmark. As a first benchmark, we derive an MNL model with

a deterministic, ex-post dominated outside option. Intuitively, this corresponds to a setting where

job seekers face no job-offer uncertainty (α = 1) and therefore never apply to more than one job.

The resulting model preserves the deterministic treatment of the outside option but shuts down the

portfolio-choice mechanism entirely. Formally, we establish in Lemma 1 below that setting α = 1 in

the baseline model produces an MNL model where the outside option, with a deterministic utility

normalized to 0, is chosen only when application costs are too high. Conditional on applying, the

choice among the inside options is standard MNL.8

8A model resembling the textbook MNL with random outside utility can be obtained by setting αi = 1 for all

i ∈ I, taking Fγ(·) = Fε(·), and letting εi0 ≡ γi
iid∼ EV1. Since the EV1 distribution has support R, this requires

relaxing the convexity assumption on application costs and, under a linear cost ci(|A|) as in Assumption 2, some

job seekers draw negative costs. For those with γi > 0, applications are costly and the model collapses to a standard

MNL in which each job seeker applies to at most one job: Ai = {j∗i }, where j∗i = argmaxj∈J∪{0} uij− [j ∈ J ] γi =

argmaxj∈J∪{0} 󰁨uij , 󰁨uij = δj + εij , and δ0 = 0. However, for job seekers with γi ≤ 0, applications are (weakly)

subsidized and the optimal choice is Ai = J , meaning they apply to all vacancies even when only one will be

exercised. Thus, the textbook MNL emerges as a special case for job seekers with positive application costs, but

the equivalence is only partial due to the behavior of those with γi ≤ 0.
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Lemma 1. When αi = 1 and ci(|A|) = γ |A| > 0 for all i ∈ I, the additive random utility model of

portfolio choice in Equations (3), (4) and (8) with extreme value type 1 independent and identically

distributed random taste shocks {εij}j∈J collapses to a model where:

(i) The optimal portfolio Ai is either a singleton or the empty set:

ni ≡ |Ai| ∈ {0, 1} .

(ii) Job seekers choose not to apply only when applications are too costly, with probability

s
(i)
0 (δ) = Fε

󰀕
γ − ln

󰀓󰁛

ℓ∈J

exp (δℓ)
󰀔󰀖

= exp

󰀕
− exp (−γ)

󰁛

ℓ∈J

exp (δℓ)

󰀖
.

(iii) Conditional on application —i.e., ni = 1—, the expected share of applications to job j ∈ J
takes the standard logit form

s
(i)
j|1(δ) =

exp (δj)󰁓
ℓ∈J exp (δℓ)

.

Proof. See Appendix D.3.

The expected number of applications to job j in this benchmark model is given by Need to

complete

this

benchmarking

exercise!

Need to

complete

this

benchmarking

exercise!q
(i)
j (δ) = I s

(i)
j|1(δ)

󰁫
1− s

(i)
0 (δ)

󰁬
(20)

Single-application benchmark.

[Second benchmark model here]

The roles of uncertainty and application costs.

[Discussion of the roles of α and γ here]

Discuss how the unconditional pmf (and its truncated counterpart) vary with typical (α, γ) and with

their heterogeneity. Links to identification in MSM (discussed later). Add simulation plots to illus-

trate.

Limitations.

[Discussion of limitations here]

Estimation overview.

[Overview of proposed estimation strategy here]
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3 An empirical application: Online job applications

In this section, we present an empirical application of our model to online job applications using

microdata from a prominent Chilean job board. The main purpose here is illustrative, given our

restrictive assumptions on preference heterogeneity, substitution patterns, and the selectivity of

recruitment. We describe the data and institutional setting in Section 3.1. Details of the estimation

strategy are provided in Section 3.2, while results are presented and discussed in Sections 3.3

and 3.4, respectively.

3.1 Chilean job board data

Most of this comes directly from my MRes paper. Needs heavy reframing and rewriting. Some of the

detail here may need to go to an appendix, and other important discussions are missing.

We estimate our model with data from online job board Trabajando.com, comprising infor-

mation on job advertisements, applicants, and their applications between January 1, 2018, and

December 31, 2018. The board operates in several, mostly Spanish-speaking countries, including

Argentina, Brazil, Colombia, Chile, Mexico, Peru, Portugal, Puerto Rico, Spain, Uruguay, and

Venezuela. We focus on the Chilean platform.9

Registration is free for job seekers, while firms either purchase a pack of ads ranging from one

“standard” ad to three “standard” plus two “featured” ads or pay for a subscription plan among a

menu of four alternatives.10 Applicants and firms both fill out information forms designed for job

seekers and employers, respectively. The job seeker form requires information on the applicant’s

expected salary, with the option of hiding it from potential employers. Similarly, firms are also

required to report in the employer form the expected wage for the vacancy being posted, with the

option of hiding it from potential applicants.

Employers’ ability to hide wages from potential applicants may raise some concerns. For

example, if job seekers cannot see offered wages, then the extent to which their application choices

respond to wage differences might be severely reduced. However, job seekers can filter job ads by

narrow ranges of offered wage, and ads with hidden wages are listed in the corresponding results.11

Therefore, applicants do observe a noisy but relatively accurate signal of the offered wage when

the firm decides to hide it. Moreover, and as described below, an indicator for hidden wage is

included in the dataset, allowing us to control for this in the analysis. A second concern is that

9See Banfi and Villena-Roldán (2019), Banfi et al. (2022), Choi et al. (2025), and Banfi et al. (2025) for other

papers using job board data from Trabajando.com.
10 See https://gestion.trabajando.cl/companies/planSelection for details on advertisement packs, and

https://empresas.trabajando.cl/planes-corporativos/ for subscription plans.
11 See section II of Banfi and Villena-Roldán (2019) for details.
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hidden wages could be misreported. Banfi and Villena-Roldán (2019) show evidence that implicit

or hidden wages are reliable, consistent with the incentives posed by the ability of job seekers to

filter by wage ranges: reporting and hiding nonsensical wages would be detrimental for the firm

posting the ad.

The information is contained in four main datasets. The first contains information on each

posted job advertisement; the second comprises information on the set of firms posting on the

platform; the third includes information on users, that is, job seekers; and the fourth is the

applications dataset, linking applicants and the ads they applied to. Unfortunately, information

on application outcomes is not recorded so this empirical exercise cannot say much about the final

hiring stage.

The job ads dataset contains information on 1,137,965 job ads posted during the sample update

number

update

number

period. The variables in the dataset are the identity of the firm posting the ad, publication and

expiry dates, number of vacancies, a dummy indicating that the wage is publicly posted, required

experience (in years), posted (or unposted) wage, work arrangement, type of contract, required

education level, area of the vacancy (e.g., administrative), required professional sector (if any),

required level of computer skills, and job title. The dataset also contains four categorical variables

used by Banfi and Villena-Roldán (2019), each corresponding to a list of words that are repeated

more than 100 times as one of the first four meaningful words of the job title. Their approach is

similar to that of Marinescu and Wolthoff (2020), and produces a list of 137 categories such as

analyst, chief, manager, or assistant for the first meaningful word; 274 categories for the second

meaningful word; and 211 and 68 for the third and fourth meaningful words, repsectively.12

The employers dataset comprises information on 39,780 firms posting ads on the website during update

number

update

number

the sample period. Observed variables include industry, region, and size. Firm size is measured

as the number of employees and is reported as a categorical variable with categories 1–10, 11–50,

51–150, 151–300, 301–500, 501–1,000, 1,001–5,000, and >5,000. Banfi and Villena-Roldán (2019)

report that many ads are posted by recruiting firms on behalf of the actual employer. This is not

directly observable in the dataset, so we follow their strategy to deal with this issue. They identify

a recruiting firm as one posting a number of vacancies exceeding half of the upper limit of its

reported size interval in a given month. We control for a recruiting firm dummy in our analysis.

The users dataset contains observations on 3,618,392 individuals initially submitting their CVs update

number

update

number

between years 1999 and 2019. Nearly half of them (46.67%) applied to at least one vacancy during

the sample period. Observed individual characteristics include date of birth, sex, nationality,

region, city, and municipality of residence, marital status, educational attainment and profession,

employment, beginning and ending dates and wage of latest work experience, availability to work,

12 See Section II.D of Banfi and Villena-Roldán (2019) for details. The numbers of categories reported here differ

somewhat because our dataset covers a different period.
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wage expectation and an indicator for it being observable to employers, and the dates of CV

registration and latest modification. This information on job seekers’ characteristics is used for

sampling purposes since our model abstracts away from modelling applicant heterogeneity.

Finally, the applications dataset includes applicant, firm, and job ad identifiers and the date

of application for 39,480,855 applications during the sample period. update

number

update

number

3.2 Estimation strategy

[Estimation strategy here]

Full derivation of minorize-maximize algorithm in Appendix E

3.3 Empirical results

[Results here]

3.4 Discussion

[Discussion of limitations and implications here]

4 Conclusion

[Conclusion here]
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Appendix

A Marginal improvement algorithm

This appendix describes the Chade and Smith (2006) marginal improvement algorithm (MIA)

within the context and notation of Section 2.1. The MIA is a greedy algorithm in the sense that

it makes a locally optimal choice in each iteration. Despite its greedy nature, it converges to the

global optimum, as shown by Chade and Smith (2006).

Consider the portfolio choice problem described by Equations (3) and (4). The MIA follows the

following iterative procedure to find the optimal portfolio Ai = argmaxA∈P(J ) Ui(A). Let Λ0 = ∅.
At iteration t ∈ {1, . . . , J}:

• Step 1: Choose any jt ∈ argmax
j∈J\Λt−1

Ui(Λt−1 ∪ {j}).

• Step 2: Stop if Ui(Λt−1 ∪ {jt})− Ui(Λt−1) < 0.

• Step 3: Set Λt = Λt−1 ∪ {jt} and go to step 1 for the next iteration.

The algorithm will stop at iteration t = min(ni + 1, J), where ni ≡ |Ai| ≤ J , identifying Ai.

B Proof of Proposition 1

Proof. Consider the portfolio choice problem (3)–(4). Let us start by showing that Assumption 1

implies that, conditional on |Ai| = n —where Ai = argmaxA∈P(J ) Ui(A)—, Ai consists of the n

(ex-post) best alternatives. This can be established by induction.

Consider iteration t = 1 of the marginal improvement algorithm (MIA) described in Ap-

pendix A. The best singleton portfolio must be the best ex post alternative since the order of

expected values {αiuij}j∈J coincides with the order of ex post utilities {uij}j∈J . Formally,

argmax
j∈J\Λ0

Ui(Λ0 ∪ {j}) = argmax
j∈J

Ui({j})

= argmax
j∈J

αiuij − ci(1)

= argmax
j∈J

uij

=
󰁱
ri(J , 1)

󰁲
,
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where the first equality follows from Λ0 = ∅, the second equality follows by direct evaluation of

(3) at A = {j}, the third equality follows because quantities αi > 0 and ci(1) do not vary with j,

and the last equality follows from the definition of the ranking function ri(·, ·).

Next, consider iteration t > 1 and suppose that

Λt−1 =
󰁱
ri(J , 1), . . . , ri(J , t− 1)

󰁲
, (B.1)

i.e., the MIA-optimal portfolio of size t − 1 consists of the t − 1 (ex-post) best alternatives. The

induction hypothesis (B.1) implies that any alternative still available for selection by the MIA

must be ranked higher —i.e., worse— than all the alternatives the MIA has already selected in

previous iterations. That is, for all j ∈ J \ Λt−1 and ℓ ∈ Λt−1,
13

r−1
i (J , j) > r−1

i (J , ℓ). (B.2)

Moreover, the ranking order over Λt−1 must obviously coincide with the first t− 1 positions of the

ranking order over J , i.e.,

ri(Λt−1, k) = ri(J , k) (B.3)

for all k ∈ {1, . . . , t− 1}. It follows that the MIA-optimal addition to Λt−1 in iteration t must be

ri(J , t) since

argmax
j∈J\Λt−1

Ui(Λt−1 ∪ {j}) = argmax
j∈J\{ri(J ,k)}t−1

k=1

αi

󰀥
t−1󰁛

k=1

(1− αi)
k−1uiri(J ,k) + (1− αi)

t−1uij

󰀦
− ci(t)

= argmax
j∈J\{ri(J ,k)}t−1

k=1

uij

=
󰁱
ri(J , t)

󰁲
,

where the first equality follows from (B.2)–(B.3) and direct evaluation of (3) at Λt−1 ∪ {j} un-

der Assumption 1, the second equality follows by discarding all (non-negative when appropriate)

quantities that do not vary with j, and the last equality follows from the definition of the ranking

function. Since t > 1 is arbitrary and we have proved the induction hypothesis holds for t = 1,

the principle of mathematical induction establishes part (ii) of Proposition 1.

Part (i) of Proposition 1 follows directly from the stopping rule in step 2 of the MIA under

Assumptions 1 and 2 by noting that, by part (ii) of the proposition, the optimal portfolio size ni

is also the position in the ranking over J of the last chosen alternative. This means ri(J , ni) is

the last alternative the MIA picks up. Hence, the optimal portfolio contains ni alternatives if and

only if (a) the MIA does not stop in step 2 of iteration ni, and (b) either ni = J or the MIA stops

in step 2 of iteration ni + 1.

13An equivalent statement to (B.2) is uij < uiℓ, but the former expression highlights the order of alternatives

that determines the relevant lottery whose expected utility the MIA maximizes in iteration t.
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From (a), we obtain

0 ≤ Ui(Λni−1 ∪ {ri(J , ni)})− Ui(Λni−1)

= αi

ni−1󰁛

k=1

(1− αi)
k−1uiri(J ,k) + αi(1− αi)

ni−1uiri(J ,ni) − γini

−
󰀥
αi

ni−1󰁛

k=1

(1− αi)
k−1uiri(J ,k) − γi(ni − 1)

󰀦

= αi(1− αi)
ni−1uiri(J ,ni) − γi,

which holds if and only if

uiri(J ,ni) ≥
γi

αi(1− αi)ni−1
. (B.4)

Similarly from (b), either ni = J or

0 > Ui(Λni
∪ {ri(J , ni + 1)})− Ui(Λni

)

= αi

ni󰁛

k=1

(1− αi)
k−1uiri(J ,k) + αi(1− αi)

niuiri(J ,ni+1) − γi(ni + 1)

−
󰀥
αi

ni󰁛

k=1

(1− αi)
k−1uiri(J ,k) − γini

󰀦

= αi(1− αi)
niuiri(J ,ni+1) − γi,

which holds if and only if

uiri(J ,ni+1) <
γi

αi(1− αi)ni
. (B.5)

Finally, note that the following monotonicity properties must hold.

uiri(J ,k) ≥
γi

αi(1− αi)k−1
, ∀k ∈ {1, . . . , ni − 1} , (B.6)

uiri(J ,k) <
γi

αi(1− αi)k−1
, ∀k ∈ {ni + 2, . . . , J} , (B.7)

where {ni + 2, . . . , J} ≡ ∅ for ni ≥ J − 1. Suppose (B.6) does not hold, so uiri(J ,k) < γiα
−1
i (1 −

αi)
−(k−1) for some k ∈ {1, . . . , ni − 1}. Then, we get the contradiction

uirJik
> uirJini

≥ γi
αi(1− αi)ni−1

= (1− αi)
k−ni

γi
αi(1− αi)k−1

> (1− αi)
k−niuirJik

> uirJik

since k < ni and αi ∈ (0, 1) =⇒ (1 − αi)
k−ni > 1. Similarly, suppose (B.7) does not hold, so

uiri(J ,k) ≥ γiα
−1
i (1− αi)

−(k−1) for some k ∈ {ni + 2, . . . , J}. Then, we get the contradiction

uirJik
< uirJini+1

<
γi

αi(1− αi)ni
= (1− αi)

k−(ni+1) γi
αi(1− αi)k−1

≤ (1− αi)
k−(ni+1)uirJik

< uirJik

since k > ni + 1 and αi ∈ (0, 1) =⇒ (1− αi)
k−(ni+1) < 1. Together, (B.4)–(B.7) establish part (i)

of Proposition 1.
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C Derivation of the job applications supply function

This appendix provides a full derivation of the applications supply function, the conditional appli-

cations share function, and the probability mass function (pmf) of the number of applications in

Equations (10), (11) and (16), respectively. Given a finite set of job seekers, I with |I| ≡ I, facing

the portfolio choice problem (3)–(4) over applications to a finite set of jobs, J with |J | ≡ J , the

expected number of applications to job j ∈ J is

E [qj] = E

󰀥
󰁛

i∈I

[j ∈ Ai]

󰀦

=
󰁛

i∈I

E
󰀅

[j ∈ Ai]
󰀆

= I P (j ∈ Ai)

= I
J󰁛

n=1

P (j ∈ Ai | ni = n)P (ni = n) . (C.1)

Our model defines (i) a mapping sj|n(δ) from δ to P (j ∈ Ai | ni = n), and (ii) a mapping sn(δ)

from δ and the joint distribution of parameters (αi, γi) to P (ni = n). These mappings follow

directly from parts (ii) and (i) of Proposition 1, respectively.

C.1 Conditional applications share function

Consider first the conditional (expected) applications share function sj|n(δ). The probability that

j belongs to the application portfolio conditional on the job seeker applying to every job is trivially

P (j ∈ Ai | ni = J) = 1. For n ∈ {1, . . . , J−1}, the probability that job j belongs to the application

portfolio conditional on the job seeker applying to n jobs is the probability that the ex post utility

of job seeker i from job j is larger than the ex post utility from their (n + 1)–th most preferred

alternative, i.e., P (j ∈ Ai | ni = n) = P
󰀃
uij > uiri(J ,n+1)

󰀄
. This is true since job seeker i applies to

job j if and only if j is among i’s ni = n most preferred alternatives. We can derive the expression

for P
󰀃
uij > uiri(J ,n+1)

󰀄
as a function of δ —and, obviously, of j and n, which we indicate by the

subscript in sj|n(δ)— defined by our model by applying a well-established result from the literature

on order statistics.

Let {ui(n)}Jn=1 represent the order statistics of {uij}j∈J such that ui(1) < · · · < ui(J), and note

that

uiri(J ,n+1) = ui(J−n) (C.2)

for all n ∈ {1, . . . , J − 1}. Similarly, let Bj ≡ J \ {j} represent the leave-out set of available

jobs excluding j, and {uj
i(n)}

J−1
n=1 the order statistics of {uiℓ}ℓ∈Bj

such that uj
i(1) < · · · < uj

i(J−1).
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Notice that “j is among the best n jobs in J ” if and only if “j is better than the J−n

worse jobs in J ” if and only if “j is better than the J − n worse jobs in Bj” for any

n ∈ {1, . . . , J − 1}. The mutual independence of {uiℓ}ℓ∈J implies that uj
i(n) is independent of uij

for all n ∈ {1, . . . , J − 1}.

The iid assumption on {εij}j∈J implies that the ex post utilities {uij}j∈J are independently

but non-identically distributed with cumulative distribution function (cdf)

Fuj
(x) ≡ P (uij ≤ x)

= P (εij ≤ x− δj)

= Fε(x− δj), (C.3)

where Fε(·) is the marginal cdf of εij. The cdf of the n–th order statistic uj
i(n) is then given by

(see, e.g., David and Nagaraja, 2003, p. 96)

Fuj
(n)
(x) =

J−1󰁛

k=n

󰁛

A∈Rk(Bj)

󰁜

ℓ∈A

Fuℓ
(x)

󰁜

m∈Bj\A

[1− Fum(x)]

=
J−1󰁛

k=n

󰁛

A∈Rk(Bj)

󰁜

ℓ∈A

Fε(x− δℓ)
󰁜

m∈Bj\A

[1− Fε(x− δm)] , (C.4)

where Rk(S) ≡ {σ ⊆ S : |σ| = k} is the set of all size-k subsets of set S —that is, all the k-

combinations of S. Combining these results and leveraging the properties of the EV1 distribution,

Fε(x) = exp (− exp (−x)), we obtain

sj|n(δ) = P
󰀃
uij > uiri(J ,n+1)

󰀄

= P
󰀃
uij > ui(J−n)

󰀄

= P
󰀓
uij > uj

i(J−n)

󰀔

=

󰁝 ∞

−∞
P
󰀓
x > uj

i(J−n)

󰀔
dFuj

(x)

=

󰁝 ∞

−∞
Fuj

(J−n)
(x)dFε(x− δj)

=

󰁝 ∞

−∞

J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

󰁜

ℓ∈A

Fε(x− δℓ)
󰁜

m∈Bj\A

[1− Fε(x− δm)] dFε(x− δj)

=

󰁝 ∞

−∞

J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

󰁜

ℓ∈A

Fε(x− δj)
exp (δℓ)

exp (δj)
󰁜

m∈Bj\A

󰀗
1− Fε(x− δj)

exp (δm)
exp (δj)

󰀘
dFε(x− δj)
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=

󰁝 1

0

J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

󰁜

ℓ∈A

u
exp (δℓ)

exp (δj)
󰁜

m∈Bj\A

󰀗
1− u

exp (δm)
exp (δj)

󰀘
du

=

󰁝 1

0

J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

u

󰁓
ℓ∈A exp (δℓ)

exp (δj)
󰁜

m∈Bj\A

󰀗
1− u

exp (δm)
exp (δj)

󰀘
du. (C.5)

The second equality follows from (C.2). The third equality follows from equivalence of the events

as discussed above. The fourth equality follows by integrating over the marginal distribution of

uij. The fifth equality follows from (C.3) and the definition of the cdf of uj
i(J−n). The sixth

equality follows from (C.4). The seventh equality follows from the fact that Fε (x− ln (a)) =

Fε (x− ln (b))a/b for a, b > 0. The eigth equality follows by the change of variable u = Fε (x− δj),

and the last equality follows from the algebraic rules of exponentiation.

Equation (C.5) defining the conditional expected applications share function, sj|n(δ), is a gen-

eralization of the well-known choice probabilities of the multinomial logit model. We can easily

verify that we get the standard choice probability for n = 1:

sj|1(δ) =

󰁝 1

0

u

󰁓
ℓ∈J\{j} exp (δℓ)

exp (δj) du

=
exp (δj)󰁓
ℓ∈J exp (δℓ)

,

since RJ−1(Bj) = R|Bj |(Bj) = {Bj} and Bj \ Bj = ∅. Note that the conditional expected shares

sj|n(δ) satisfy the following recursive relation. We can rewrite (C.5) as

sj|n(δ) =

󰁝 1

0

fj|n(u, δ) du,

where

fj|n(u, δ) =
J−1󰁛

k=J−n

fj(u, δ, k)

and

fj(u, δ, k) =
󰁛

A∈Rk(Bj)

u

󰁓
ℓ∈A exp (δℓ)

exp (δj)
󰁜

m∈Bj\A

󰀗
1− u

exp (δm)
exp (δj)

󰀘
.

For n ∈ {2, . . . , J}, we can recursively decompose

fj|n(u, δ) =
J−1󰁛

k=J−(n−1)

fj(u, δ, k) +
J−n󰁛

k=J−n

fj(u, δ, k)

= fj|n−1(u, δ) + fj(u, δ, J − n)

...
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= fj|1(u, δ) +
J−2󰁛

k=J−n

fj(u, δ, k),

implying the recursive relations

sj|n(δ) = sj|n−1(δ) +

󰁝 1

0

fj(u, δ, J − n) du, (C.6)

sj|n(δ) = sj|1(δ) +

󰁝 1

0

J−2󰁛

k=J−n

fj(u, δ, k) du. (C.7)

Furthermore, since fj(u, δ, J − n) ≥ 0 for u ∈ [0, 1], Equation (C.6) establishes that the condi-

tional share sj|n(δ) increases monotonically with the number of applications n. Finally, while our

derivation of sj|n(δ) assumed n ∈ {1, . . . , J−1}, it is possible to show that the resulting expression

is also valid for n = J , integrating to sj|J(δ) = 1, and that
󰁓

j∈J sj|n(δ) = n for all n ∈ {1, . . . , J}.

Given parameters δ, the integral on the right-hand side of Equation (C.5) can be accurately

approximated by numerical quadrature for any n ∈ {1, . . . , J}. Alternatively, we can obtain a

closed-form solution by noting that

󰁜

m∈Bj\A

󰀗
1− u

exp (δm)
exp (δj)

󰀘
= 1 +

|Bj\A|󰁛

s=1

(−1)s
󰁛

B∈Rs(Bj\A)

u

󰁓
m∈B exp (δm)

exp (δj) ,

by standard combinatorics —e.g., by a straightforward generalization of the binomial theorem—,

so (C.5) simplifies to

sj|n(δ) =
J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

󰁝 1

0

u

󰁓
ℓ∈A exp (δℓ)

exp (δj) du+
J−1−k󰁛

s=1

(−1)s
󰁛

B∈Rs(Bj\A)

󰁝 1

0

u

󰁓
ℓ∈A∪B exp (δℓ)

exp (δj) du

=
J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

exp (δj)󰁓
ℓ∈{j}∪A exp (δℓ)

+
J−1−k󰁛

s=1

(−1)s
󰁛

B∈Rs(Bj\A)

exp (δj)󰁓
ℓ∈{j}∪A∪B exp (δℓ)

, (C.8)

where
󰁓0

s=1(·) ≡ 0 for notational consistency. Given parameter estimates 󰁥δ, the computational

burden in estimating these generalized conditional choice probabilities, either numerically or ana-

lytically, grows quickly with the number of alternatives due to the combinatorics involved.

C.2 Probability mass function of the number of applications

Consider now the conditional pmf of the number of applications conditional on the admission

probability αi and the cost of applications γi, sn|α,γ(δ,αi, γi). We can recover the unconditional

pmf, sn(δ), by integrating the conditional pmf over the joint distribution of parameters (αi, γi),

which we assume to be statistically independent. We start by obtaining the conditional pmf at
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n = 0 despite the conditioning event ni = 0 not appearing explicitly Equation (C.1).14 The job

seeker does not apply to any jobs when the expected utility of the singleton portfolio comprising

the best ex post alternative is negative, i.e.,

ni = 0 ⇐⇒ Ui({ri(J , 1)}) < 0 ⇐⇒ ui(J) < ψ1
i ,

where the thresholds {ψn
i }Jn=1 are defined as functions of (αi, γi) in Equation (13). Conditional on

(αi, γi), the probability of this event is

s0|α,γ(δ,αi, γi) = P (ni = 0 | αi, γi)

= Fu(J)

󰀃
ψ1
i

󰀄

=
󰁜

ℓ∈J

Fε

󰀃
ψ1
i

󰀄exp (δℓ)

= Fε

󰀃
ψ1
i

󰀄󰁓
ℓ∈J exp (δℓ). (C.9)

Similarly, for the case n = J , the job seeker applies to every job when even the marginal gain

in expected utility from expanding the locally-optimal size J − 1 portfolio to include their least

preferred job is non-negative, i.e.,

ni = J ⇐⇒ Ui({rJi1, . . . , rJiJ})− Ui({rJi1, . . . , rJiJ−1}) ≥ 0 ⇐⇒ ui(1) ≥ ψJ
i .

The conditional probability is given by

sJ |α,γ(δ,αi, γi) = P (ni = J | αi, γi)

= 1− Fu(1)

󰀃
ψJ
i

󰀄

= 1−
J󰁛

k=1

󰁛

A∈Rk(J )

󰁜

ℓ∈A

Fε

󰀃
ψJ
i − δℓ

󰀄 󰁜

m∈J\A

󰁫
1− Fε

󰀃
ψJ
i − δm

󰀄󰁬

= 1−
J󰁛

k=1

󰁛

A∈Rk(J )

Fε

󰀃
ψJ
i

󰀄󰁓
ℓ∈A exp (δℓ)

󰁜

m∈J\A

󰁫
1− Fε

󰀃
ψJ
i

󰀄exp (δm)
󰁬
. (C.10)

Finally, for the interior events ni = n ∈ {1, . . . , J − 1}, the stopping rule in part (i) of Propo-

sition 1 implies that

ni = n ⇐⇒ ui(J−n+1) ≥ ψn
i and ui(J−n) < ψn+1

i ,

14The application of the law of total probability in Equation (C.1) actually requires consideration of the case

ni = 0, but the conditional probability P (j ∈ Ai | ni = 0) is obviously zero. We include the event ni = 0 for

completeness, but also because it illustrates the reasoning behind the derivations for ni > 0 in the simplest possible

scenario.
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where ψn+1
i > ψn

i . That is, the event that the job seeker applies to n jobs depends on the realization

of two consecutive order statistics. Instead of explicitly integrating over the joint distribution of

the order statistics of ex post utilities, we can directly derive an expression for the probability that

ui(J−n+1) ≥ ψn
i and ui(J−n) < ψn+1

i by considering the following combinatorial arguments.

To find the probability measure of the set of all realizations of the expost utilities of a job

seeker such that the (J − n)–th and (J − n + 1)–th order statistics satisfy ui(J−n+1) ≥ ψn
i and

ui(J−n) < ψn+1
i , we can partition this set according to how many realizations lie in the interval

[ψn
i ,ψ

n+1
i ). Since the resulting subsets are disjoint events, we need simply compute the sum of

the probabilities of each event in the partition. Figure C.1 below depicts the configurations of the

order statistics that obtain for different sets in this partition.

Let s be the number of realizations in [ψn
i ,ψ

n+1
i ). As can be seen in Panel (a), the event

s = 0 in our partition only includes realizations of random vector ui such that exactly J − n

elements lie below ψn
i and the remaining n elements lie above ψn+1

i . The probability of this subset

can be obtained by considering all possible combinations of J − n alternatives and computing the

probability that the utilities of these alternatives are less than ψn
i and the utilities of the remaining

alternatives are larger than ψn+1
i , i.e.,

󰁛

B∈RJ−n(J )

󰁜

p∈B

Fup(ψ
n
i )

󰁜

q∈J\B

󰀅
1− Fuq(ψ

n+1
i )

󰀆
.

Panel (b) of Figure C.1 illustrates the element of the partition where s = J . This case includes

all realizations of ui such that every element lies in [ψn
i ,ψ

n+1
i ). The probability of this subset is

simply the probability that the utility of every alternative lies in [ψn
i ,ψ

n+1
i ) since there is only one

combination of size J from J —i.e., RJ(J ) = R|J |(J ) = {J }. The corresponding expression is

󰁜

ℓ∈J

󰀅
Fuℓ

(ψn+1
i )− Fuℓ

(ψn
i )
󰀆
.

Finally, for the cases s ∈ {1, . . . , J − 1} depicted in panel (c), let ui(r) represent the smallest

order statistic that lies in [ψn
i ,ψ

n+1
i ). Note that ui(J−n) < ψn+1

i implies the largest order statistic

in [ψn
i ,ψ

n+1
i ) is at least the (J − n)–th, while ui(J−n+1) ≥ ψn

i implies the smallest order statistic

in [ψn
i ,ψ

n+1
i ) is at most the (J − n + 1)–th. Therefore, r must satisfy r + s − 1 ≥ J − n and

r ≤ J − n + 1. Since the number of elements of ui that lie in (−∞,ψn
i ) is r − 1 and there are

only J − s elements that lie outside [ψn
i ,ψ

n+1
i ), the probability of the s–th subset in the partition

can be obtained by (i) considering all combinations of size s of the J alternatives, A ∈ Rs(J ) ,

(ii) considering all the combinations of size t ∈ {max (J − n− s, 0), . . . ,min (J − n, J − s)} of the

remaining J − s alternatives, B ∈ Rt(J \A), and (iii) computing the probability that the utilities

of the alternatives in A lie between ψn
i and ψn+1

i , the utilities of the alternatives in B lie below ψn
i ,

and the remaining alternatives in J \ (A ∪B) have utilities larger than ψn+1
i . The corresponding

25



expression is

󰁛

A∈Rs(J )

󰁜

ℓ∈A

󰀅
Fuℓ

(ψn+1
i )− Fuℓ

(ψn
i )
󰀆󰁛

t∈τsn

󰁛

B∈Rt(J\A)

󰁜

p∈B

Fup(ψ
n
i )

󰁜

q∈J\(A∪B)

󰀅
1− Fuq(ψ

n+1
i )

󰀆
,

where τ sn ≡ {max (J − n− s, 0), . . . ,min (J − n, J − s)}. Summing over all values of s, we obtain

sn|α,γ(δ,αi, γi) = P (ni = n | αi, γi)

=
J󰁛

s=0

󰁛

A∈Rs(J )

󰁜

ℓ∈A

󰀅
Fuℓ

󰀃
ψn+1
i

󰀄
− Fuℓ

󰀃
ψn
i

󰀄󰀆

󰁛

t∈τsn

󰁛

B∈Rt(J\A)

󰁜

p∈B

Fup

󰀃
ψn
i

󰀄 󰁜

q∈J\(A∪B)

󰁫
1− Fuq

󰀃
ψn+1
i

󰀄󰁬

=
J󰁛

s=0

󰁛

A∈Rs(J )

󰁜

ℓ∈A

󰁫
Fε

󰀃
ψn+1
i

󰀄exp (δℓ) − Fε

󰀃
ψn
i

󰀄exp (δℓ)
󰁬

󰁛

t∈τsn

󰁛

B∈Rt(J\A)

Fε

󰀃
ψn
i

󰀄󰁓
p∈B exp (δp)

󰁜

q∈J\(A∪B)

󰁫
1− Fε

󰀃
ψn+1
i

󰀄exp (δq)
󰁬
. (C.11)
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Figure C.1: Realizations of the order statistics consistent with n applications

ψn
i ψn+1

i
ui(J−n) ui(J−n+1)· · · · · ·

(a) No realizations of uij lie between ψn
i and ψn+1

i

ψn
i ψn+1

i
ui(1) ui(J)· · ·

(b) All realizations of uij lie between ψn
i and ψn+1

i

ψn
i ψn+1

i
ui(r) ui(r+s−1)· · ·· · · · · ·

(c) s ∈ {1, . . . , J − 1} realizations of uij lie between ψn
i and ψn+1

i

Notes: This figure depicts the realizations of the order statistics of utilities uij that are consistent with

the job seeker applying to n jobs according to the stopping rule in part (i) of Proposition 1. That is,

ui(J−n) < ψn+1
i and ui(J−n+1) ≥ ψn

i for n ∈ {1, . . . , J − 1}. The thresholds ψn
i and ψn+1

i are defined

in Equation (13). Cases are indexed by the number of realizations of uij in the interval
󰀅
ψn
i ,ψ

n+1
i

󰀄
,

s ∈ {0, . . . , J}. The case s = 0 in Panel (a) is equivalent to exactly J − n realizations of uij below ψn
i

and exactly n above ψn+1
i . The case s = J in Panel (b) is equivalent to exactly J realizations of uij

between ψn
i and ψn+1

i . For the cases s ∈ {1, . . . , J − 1} in Panel (c), r must satisfy r ≤ J−n+1 so that

ui(J−n+1) ≥ ψn
i , and r+ s− 1 ≥ J −n so ui(J−n) < ψn+1

i , where ui(r) is the smallest order statistic that

lies between ψn
i and ψn+1

i . Then, we have at least max (J − n− s, 0) and at most min (J − n, J − s)

realizations below ψn
i , with the remaining realizations above ψn+1

i .
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D Other proofs and derivations

D.1 The wage elasticity of the job applications supply

The elasticity of the applications supply to job j ∈ J with respect to the wage of job ℓ ∈ J is

ηqj ,wℓ
=

∂ ln
󰀃
qj(δ)

󰀄

∂ ln (wℓ)

=
1

qj(δ)

∂qj(δ)

∂ ln (wℓ)

=
1

qj(δ)

∂qj(δ)

∂δℓ

∂δℓ
∂ ln (wℓ)

=
1

qj(δ)

󰀥
I

J󰁛

n=1

∂sj|n(δ)

∂δℓ
sn(δ) + sj|n(δ)

∂sn(δ)

∂δℓ

󰀦
β, (D.1)

where the last equality follows from partially differentiating Equation (10) with respect to δℓ and

Equation (8) —for job ℓ— with respect to ln (wℓ).

The elasticity of the aggregate supply of applications at the firm level is

ηqf ,wℓ
=

∂ ln
󰀃
qf (δ)

󰀄

∂ ln (wℓ)

=
1

qf (δ)

∂qf (δ)

∂ ln (wℓ)

=
1

qf (δ)

󰁛

j∈J f

∂qj(δ)

∂ ln (wℓ)

=
1

qf (δ)

󰁛

j∈J f

qj(δ) ηqj ,wℓ
, (D.2)

where the third equality follows from (18), and the last equality follows from the definition of the

vacancy-level elasticity.

Finally, the elasticity of the firm-level supply of applications with respect to a simultaneous

increase of the wages the firm offers for all its vacancies, wf = {wℓ}ℓ∈J f , is given by

ηqf ,wf =
1

qf (δ)

󰁛

ℓ∈J f

󰁛

j∈J f

qj(δ) ηqj ,wℓ
. (D.3)

28



D.2 Closed-form derivatives

We can obtain closed-form solutions for the partial derivatives of the conditional share sj|n(δ) and

the conditional pmf sn|α,γ(δ,αi, γi) with respect to δℓ for n ∈ {1, . . . , J}. The partial derivative of

the unconditional pmf, sn(δ), with respect to δℓ is then obtained by integrating the partial of the

conditional pmf over Fα(·)× Fγ(·):

∂sn(δ)

∂δℓ
=

∂

∂δℓ

󰁝 󰁝
sn|α,γ(δ,αi, γi)dFα(αi)dFγ(γi)

=

󰁝 󰁝
∂sn|α,γ(δ,αi, γi)

∂δℓ
dFα(αi)dFγ(γi), (D.4)

where the second equality follows since sn|α,γ(δ,αi, γi) is continuously differentiable in δℓ and the

supports of Fα and Fγ do not depend on δℓ.
15

To find the partial derivatives of sj|n(δ), fix (j, n) ∈ J × {1, . . . , J} and let

Eℓ(S) =
exp (δℓ)󰁓

k∈{j}∪S exp (δk)
, (D.5)

for ℓ ∈ J and S ⊆ Bj. Note that the expression on the right-hand side of Equation (11) is a finite

sum of terms —some with a negative sign— of the form Ej(S) for different subsets S of the choice

set that do not contain j. Each such term has partial derivative with respect to δℓ

∂Ej(S)

∂δℓ
=

󰀻
󰁁󰀿

󰁁󰀽

Ej(S)
󰀅
1− Ej(S)

󰀆
if ℓ = j

− [ℓ ∈ S]Ej(S)Eℓ(S) otherwise

. (D.6)

Thus,

∂sj|n(δ)

∂δj
=

J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

∂Ej(A)

∂δj
+

|Bj\A|󰁛

s=1

(−1)s
󰁛

B∈Rs(Bj\A)

∂Ej(A ∪B)

∂δj

=
J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

Ej(A)
󰀅
1− Ej(A)

󰀆
+

|Bj\A|󰁛

s=1

(−1)s
󰁛

B∈Rs(Bj\A)

Ej(A ∪B)
󰀅
1− Ej(A ∪B)

󰀆

(D.7)

and, similarly for ℓ ∕= j,

∂sj|n(δ)

∂δℓ
=

J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

∂Ej(A)

∂δℓ
+

|Bj\A|󰁛

s=1

(−1)s
󰁛

B∈Rs(Bj\A)

∂Ej(A ∪B)

∂δℓ

15The function sn|α,γ(δ,αi, γi) is a finite sum of products of terms of the form Fε(ψ
n+1
i )exp (δk) − Fε(ψ

n
i )

exp (δk),

Fε(ψ
n
i )

exp (δk), or
󰀅
1− Fε(ψ

n+1
i )exp (δk)

󰀆
. Each of these factors is uniformly bounded since Fε(x) ∈ [0, 1] for all x ∈ R

and the thresholds {ψn
i }

J
n=1 do not depend on δ.
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= −
J−1󰁛

k=J−n

󰁛

A∈Rk(Bj)

󰀥
[ℓ ∈ A]Ej(A)Eℓ(A)

+

|Bj\A|󰁛

s=1

(−1)s
󰁛

B∈Rs(Bj\A)

[ℓ ∈ A ∪B]Ej(A ∪B)Eℓ(A ∪B)

󰀦
. (D.8)

To find the partial derivative of sn|α,γ(δ,αi, γi) with respect to δℓ for n ∈ {1, . . . , J − 1}, rewrite Need to

do also for

n = J.

Maybe also

mention

that n = 0

is irrele-

vant.

Need to

do also for

n = J.

Maybe also

mention

that n = 0

is irrele-

vant.

Equation (12) as

sn|α,γ(δ,αi, γi) =
J󰁛

s=0

󰁛

A∈Rs(J )

󰁛

t∈τsn

󰁛

B∈Rt(J\A)

󰀥󰀕󰁜

k∈A

ak

󰀖󰀕󰁜

p∈B

bp

󰀖󰀕 󰁜

q∈J\(A∪B)

cq

󰀖󰀦
, (D.9)

where ak = (Fn+1)
exp (δk) − (Fn)

exp (δk), bk = (Fn)
exp (δk), ck = 1− (Fn+1)

exp (δk), and Fk = Fε(ψ
k
i ) for

k ∈ {1, . . . , J}. Note that the expression on the right-hand side of (D.9) is a finite sum of products

of terms of the form ak, bp, or cq for k, p, and q in different, mutually exclusive subsets of J . Since

ℓ belongs to only one of these subsets, the chain rule yields

∂sn|α,γ(δ,αi, γi)

∂δℓ
=

J󰁛

s=0

󰁛

A∈Rs(J )

󰁛

t∈τsn

󰁛

B∈Rt(J\A)

󰀥
[ℓ ∈ A]

∂aℓ
∂δℓ

󰀕 󰁜

k∈A\{ℓ}

ak

󰀖󰀕󰁜

p∈B

bp

󰀖󰀕 󰁜

q∈J\(A∪B)

cq

󰀖

+ [ℓ ∈ B]
∂bℓ
∂δℓ

󰀕󰁜

k∈A

ak

󰀖󰀕 󰁜

p∈B\{ℓ}

bp

󰀖󰀕 󰁜

q∈J\(A∪B)

cq

󰀖

+ [ℓ /∈ A ∪B]
∂cℓ
∂δℓ

󰀕󰁜

k∈A

ak

󰀖󰀕󰁜

p∈B

bp

󰀖󰀕 󰁜

q∈J\(A∪B∪{ℓ})

cq

󰀖󰀦

=
J󰁛

s=0

󰁛

A∈Rs(J )

󰁛

t∈τsn

󰁛

B∈Rt(J\A)

󰀥󰀕󰁜

k∈A

ak

󰀖󰀕󰁜

p∈B

bp

󰀖󰀕 󰁜

q∈J\(A∪B)

cq

󰀖

󰀕
[ℓ ∈ A]

1

aℓ

∂aℓ
∂δℓ

+ [ℓ ∈ B]
1

bℓ

∂bℓ
∂δℓ

+ [ℓ /∈ A ∪B]
1

cℓ

∂cℓ
∂δℓ

󰀖󰀦
,

(D.10)

where ∂aℓ
∂δℓ

= exp (δℓ)
󰀅
(Fn+1)

exp (δℓ) ln (Fn+1)− (Fn)
exp (δℓ) ln (Fn)

󰀆
, ∂bℓ

∂δℓ
= exp (δℓ)(Fn)

exp (δℓ) ln (Fn),

and ∂cℓ
∂δℓ

= − exp (δℓ)(Fn+1)
exp (δℓ) ln (Fn+1).

D.3 Proof of Lemma 1

Remark. The following proof makes use of the properties of the EV1 distribution and the ARUM

structure discussed in Appendix C, which we omit here to avoid repetition.

Proof. Start by noting how Equation (3) changes when αi = 1. In this case, the job seeker faces no

uncertainty regarding her ability to exercise any option in the application portfolio —i.e., getting
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the job—, but the constraint that only one can be exercised binds. Given any nonempty application

portfolio A ∕= ∅, only the most ex-post preferred option in the portfolio, ri(A, 1), will be exercised.

Thus, the von Neumann–Morgenstern utility from nonempty portfolio A ⊆ J is

Ui(A) = uiri(A,1) − ci(|A|). (D.11)

For an empty portfolio, expected utility simply coincides with the ex-post Bernoulli utility of the

outside option:

Ui(∅) = −ci(0) = 0 = ui0. (D.12)

Now, let γ > 0, set ci(|A|) = γ |A|, and note that

Ui(A) = uiri(A,1) − γ |A|

≤ uiri(A,1) − γ

= Ui

󰀃
{ri(A, 1)}

󰀄

for any nonempty A ⊆ J since |A| ∈ {1, . . . , J}. Therefore, conditional on applying, the optimal

portfolio is a singleton. Accounting for the case Ai = ∅, we conclude Ai ∈ {0, 1}, establishing part

(i) of Lemma 1.

Next, to prove part (ii), consider the non-application margin. Notice that, conditional on

applying, the optimal portfolio is the singleton containing the best ex-post alternative:

argmax
A∈{σ⊆J :|σ|>0}

Ui(A) = {ri(J , 1)} .

Not applying —i.e., choosing the outside option— is optimal if and only if the marginal cost of

applications exceeds the highest ex-post utility among the inside alternatives:

Ai = ∅ ⇐⇒ Ui

󰀃
{ri(J , 1)}

󰀄
< Ui(∅) ⇐⇒ uiri(J ,1) − γ < 0.

This event has probability

P
󰀕
max
ℓ∈J

uiℓ < γ

󰀖
= Fε

󰀕
γ − ln

󰀓󰁛

ℓ∈J

exp (δℓ)
󰀔󰀖

= exp

󰀕
− exp (−γ)

󰁛

ℓ∈J

exp (δℓ)

󰀖
,

establishing part (ii) of Lemma 1.

Finally, for any j ∈ J , note that

P (Ai = {j} | Ai ∕= ∅) = P
󰀕
max
ℓ∈J

uiℓ ≤ uij

󰀖
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=
exp (δj)󰁓
ℓ∈J exp (δℓ)

,

which establishes part (iii) of Lemma 1.

E Minorize-maximize algorithm

This appendix closely follows Appendix D of Roussille and Scuderi (2025). The likelihood contri-

bution of job seeker i can be written as

fi (δ | Ai) = P

󰀳

󰁃
󰁟

j∈Ai,ℓ∈Ai

󰀝
δj + εij > δℓ + εiℓ

󰀞󰀴

󰁄

= P

󰀣
󰁟

j∈Ai

󰀝
δj + εij > max

ℓ∈Ai

δℓ + εiℓ

󰀞󰀤

=

󰁝 ∞

−∞

󰀣
󰁜

j∈Ai

1− Fε (x− δj)

󰀤
dFε

󰀳

󰁃x− ln

󰀣
󰁛

ℓ∈Ai

exp (δℓ)

󰀤󰀴

󰁄

=

󰁝 ∞

−∞

󰀳

󰁅󰁅󰁅󰁃
󰁜

j∈Ai

1− Fε

󰀳

󰁃x− ln

󰀣
󰁛

ℓ∈Ai

exp (δℓ)

󰀤󰀴

󰁄

exp(δj)
󰁓

ℓ∈Ai
exp (δℓ)

󰀴

󰁆󰁆󰁆󰁄
dFε

󰀳

󰁃x− ln

󰀣
󰁛

ℓ∈Ai

exp (δℓ)

󰀤󰀴

󰁄

=

󰁝 1

0

󰀣
󰁜

j∈Ai

1− u

exp (δj)󰁓
ℓ∈Ai

exp (δℓ)

󰀤
du

=

󰁝 1

0

󰀣
󰁜

j∈Ai

1− zexp (δj)

󰀤󰀳

󰁃
󰁛

ℓ∈Ai

exp (δℓ)

󰀴

󰁄 z
󰁓

ℓ∈Ai
exp (δℓ)−1dz, (E.1)

where Ai =
󰀋
Ai, Ai

󰀌
is job seeker i’s partition of the choice set into chosen and unchosen alterna-

tives and Fε(x) = exp (− exp (−x)) is the cdf of the EV1 distribution. The second equality follows

from the equivalence of the corresponding events, the third equality follows from the assumption

of independent observations and the fact that {εij}j∈J
iid∼ EV1 =⇒ P

󰀃
maxℓ∈Ai

δℓ + εiℓ ≤ x
󰀄
=

Fε

󰀃
x− ln

󰀃󰁓
ℓ∈Ai

exp (δℓ)
󰀄󰀄
, the fourth equality uses the fact that Fε (x− ln (a)) = Fε (x− ln (b))a/b

for a, b > 0, the fifth equality applies the change of variable u = Fε

󰀃
x− ln

󰀃󰁓
ℓ∈Ai

exp (δℓ)
󰀄󰀄
, and

the last equality makes the change of variable z = u
1/

󰁓
ℓ∈Ai

exp (δℓ). Numerical evaluation of the

resulting integral allows us to avoid iterating over all the permutations of the application portfolio

Ai to break ties, which becomes an increasingly demanding computational task as the number of

alternatives grows.
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Given the iid assumption, the log-likelihood function takes the form

ℓ
󰀃
δ | {Ai}i∈I

󰀄
=

󰁛

i∈I

ln
󰀓
fi (δ | Ai)

󰀔
,

which could be directly maximized using the expression in Equation (E.1).16 Instead, we gain some

computational speed by implementing a minorize-maximize (MM) algorithm based on monotoni-

cally increasing a suitable surrogate function satisfying an ascent property that guarantees mono-

tonic increases of the objective function.17

Let δ(n) represent the current iterate in our MM algorithm. A minorizing function of the

real-valued function ℓ (δ) at the point δ(n) is any function g
󰀓
δ | δ(n)

󰀔
satisfying

g
󰀓
δ | δ(n)

󰀔
≤ ℓ (δ) , ∀ δ

g
󰀓
δ(n) | δ(n)

󰀔
= ℓ

󰀓
δ(n)

󰀔
.

Note that if our iterative procedure is such that g
󰀓
δ(n+1) | δ(n)

󰀔
≥ g

󰀓
δ(n) | δ(n)

󰀔
—i.e., each

iteration (weakly) increases the corresponding surrogate minorizing function—, then

ℓ
󰀓
δ(n+1)

󰀔
≥ g

󰀓
δ(n+1) | δ(n)

󰀔

≥ g
󰀓
δ(n) | δ(n)

󰀔

= ℓ
󰀓
δ(n)

󰀔
,

where the first inequality follows from the definition of g
󰀓
· | δ(n)

󰀔
as a minorizing function of

ℓ (·) at δ(n), the second inequality is our assumption, and the equality follows again from the

definition of a minorizing function. This ascent property of minorizing functions guarantees that

MM algorithms force the objective function uphill.

MM algorithms typically construct a suitable surrogate minorizing function at the current

iterate and then maximize it to obtain the next iterate, i.e.,

δ(n+1) = argmax
δ

g
󰀓
δ | δ(n)

󰀔
,

leading to significant computational efficiency gains when the surrogate is easy to maximize. How-

ever, the ascent property only requires increasing the surrogate function, as shown above. Conse-

quently, we follow Roussille and Scuderi (2025) in replacing full maximization in the ‘maximization’

step with a single gradient ascent update.

16For notational simplicity, we hereafter suppress the dependence of the likelihood function on the data {Ai}i∈I .
17See Wu and Lange (2010) for an introduction to MM algorithms.
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To construct our minorizing surrogate of the log-likelihood function at δ(n), we start by defining

ρi

󰀓
δj | δ(n)

󰀔
=

exp (δj)
󰁓

ℓ∈Ai
exp

󰀓
δ
(n)
ℓ

󰀔 ,

ϕi

󰀓
δ, z | δ(n)

󰀔
=

󰀣
󰁜

j∈Ai

1− zρi(δj |δ
(n))

󰀤
󰁛

ℓ∈Ai

ρi

󰀓
δℓ | δ(n)

󰀔
z
󰁓

ℓ∈Ai
ρi(δℓ|δ(n))−1,

πi

󰀓
z | δ(n)

󰀔
=

ϕi

󰀓
δ(n), z | δ(n)

󰀔

󰁕 1

0
ϕi

󰀓
δ(n), x | δ(n)

󰀔
dx

,

and noting that

fi (δ)

fi

󰀓
δ(n)

󰀔 =

󰁝 1

0

ϕi

󰀓
δ, z | δ(n)

󰀔

ϕi

󰀓
δ(n), z | δ(n)

󰀔πi

󰀓
z | δ(n)

󰀔
dz,

which follows from the fact that fi (δ + αι) = fi (δ) ∀α ∈ R and choosing α = − ln
󰀓󰁓

ℓ∈Ai
exp

󰀃
δ
(n)
ℓ

󰀄󰀔
,

where ι is a vector of ones. Since πi

󰀓
z | δ(n)

󰀔
≥ 0 and

󰁕 1

0
πi

󰀓
z | δ(n)

󰀔
dz = 1, applying Jensen’s

inequality yields

ln

󰀳

󰁃
󰁝 1

0

ϕi

󰀓
δ, z | δ(n)

󰀔

ϕi

󰀓
δ(n), z | δ(n)

󰀔πi

󰀓
z | δ(n)

󰀔
dz

󰀴

󰁄 ≥
󰁝 1

0

ln

󰀳

󰁃
ϕi

󰀓
δ, z | δ(n)

󰀔

ϕi

󰀓
δ(n), z | δ(n)

󰀔

󰀴

󰁄πi

󰀓
z | δ(n)

󰀔
dz

⇐⇒ ℓi (δ) ≥ ℓi

󰀓
δ(n)

󰀔
+

󰁝 1

0

ln

󰀳

󰁃
ϕi

󰀓
δ, z | δ(n)

󰀔

ϕi

󰀓
δ(n), z | δ(n)

󰀔

󰀴

󰁄πi

󰀓
z | δ(n)

󰀔
dz,

(E.2)

where ℓi (δ) = ln (fi (δ)) is the log-likelihood contribution of observation i. We obtain our first

minorization of this log-likelihood contribution by defining

H
(n)
πi = −

󰁝 1

0

ln

󰀕
πi

󰀓
z | δ(n)

󰀔󰀖
πi

󰀓
z | δ(n)

󰀔
dz

and rewriting (E.2) as

ℓi (δ) ≥ H
(n)
πi +

󰁝 1

0

ln
󰀓
ϕi (δ, z | δ)(n)

󰀔
πi

󰀓
z | δ(n)

󰀔
dz, (E.3)

which holds with equality at δ = δ(n). We can improve on this minorization to obtain a surrogate

function that is separable in δ by noting that

ln
󰀓
ϕi (δ, z | δ)(n)

󰀔
=

󰁛

j∈Ai

ln
󰀓
1− zρi(δj |δ

(n))
󰀔
+ln

󰀳

󰁃
󰁛

ℓ∈Ai

ρi

󰀓
δℓ | δ(n)

󰀔
󰀴

󰁄+

󰀳

󰁃
󰁛

ℓ∈Ai

ρi

󰀓
δℓ | δ(n)

󰀔
− 1

󰀴

󰁄 ln (z)

(E.4)
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and

ln

󰀳

󰁃
󰁛

ℓ∈Ai

ρi

󰀓
δℓ | δ(n)

󰀔
󰀴

󰁄 = ln

󰀳

󰁃
󰁛

ℓ∈Ai

exp (δℓ)

exp
󰀓
δ
(n)
ℓ

󰀔ρi
󰀓
δ
(n)
ℓ | δ(n)

󰀔
󰀴

󰁄

≥
󰁛

ℓ∈Ai

ln

󰀳

󰁃 exp (δℓ)

exp
󰀓
δ
(n)
ℓ

󰀔

󰀴

󰁄ρi

󰀓
δ
(n)
ℓ | δ(n)

󰀔

⇐⇒ ln

󰀳

󰁃
󰁛

ℓ∈Ai

exp (δℓ)

󰀴

󰁄 ≥
󰁛

ℓ∈Ai

δℓ ρ
󰀓
δ
(n)
ℓ | δ(n)

󰀔
+H

(n)
ρi , (E.5)

where H
(n)
ρi = −

󰁓
ℓ∈Ai

ρi

󰀓
δ
(n)
ℓ | δ(n)

󰀔
ln
󰀓
ρi

󰀓
δ
(n)
ℓ | δ(n)

󰀔󰀔
and the inequality follows from Jensen’s

inequality since ρi

󰀓
δ
(n)
ℓ | δ(n)

󰀔
≥ 0 and

󰁓
ℓ∈Ai

ρi

󰀓
δ
(n)
ℓ | δ(n)

󰀔
= 1. Notice that (E.5) holds with

equality at δ = δ(n). Finally, combining with (E.3) and (E.4) yields

ℓi (δ) ≥ H
(n)
i + gi

󰀓
δ | δ(n)

󰀔
, (E.6)

where

gi

󰀓
δ | δ(n)

󰀔
=

󰁝 1

0

󰁛

j∈Ai

ln
󰀓
1− zρi(δj |δ

(n))
󰀔
πi

󰀓
z | δ(n)

󰀔
dz +

󰁛

ℓ∈Ai

δℓ ρi

󰀓
δ
(n)
ℓ | δ(n)

󰀔

+
󰁛

ℓ∈Ai

ρi

󰀓
δℓ | δ(n)

󰀔󰁝 1

0

ln (z)πi

󰀓
z | δ(n)

󰀔
dz,

H
(n)
i = H

(n)
πi +H

(n)
ρi −

󰁝 1

0

ln (z)πi

󰀓
z | δ(n)

󰀔
dz,

and (E.6) holds with equality at δ = δ(n). Thus, the log-likelihood function ℓ (δ) =
󰁓

i∈I ℓi (δ) is

minorized at δ(n) by the surrogate function

g
󰀓
δ | δ(n)

󰀔
= H(n) +

󰁛

i∈I

gi

󰀓
δ | δ(n)

󰀔
, (E.7)

where H(n) =
󰁓

i∈I H
(n)
i .

In its nth iteration, our MM algorithm looks for δ(n+1) such that g
󰀓
δ(n+1) | δ(n)

󰀔
≥ g

󰀓
δ(n) | δ(n)

󰀔
,

producing an increase in the log-likelihood function by the ascent property. Notice that increasing
󰁓

i∈I gi

󰀓
δ | δ(n)

󰀔
is sufficient to obtain an increase in g

󰀓
δ | δ(n)

󰀔
since H(n) is constant in δ. The

Newton-Raphson update for maximization of
󰁓

i∈I gi

󰀓
δ | δ(n)

󰀔
is given by

δ(n+1) = δ(n) +

󰀳

󰁃−
󰁛

i∈I

∂2gi

󰀓
δ | δ(n)

󰀔

∂δ∂δ′

󰀴

󰁄

−1 󰀳

󰁃
󰁛

i∈I

∂gi

󰀓
δ | δ(n)

󰀔

∂δ

󰀴

󰁄

󰀏󰀏󰀏󰀏󰀏󰀏󰀏
δ=δ(n)
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and, as mentioned above, we use only one such gradient ascent update in each iteration to obtain

an increase in the objective function. The fact that gi

󰀓
δ | δ(n)

󰀔
has a diagonal Hessian greatly

simplifies computation of this update. The jth entry of its gradient and the jth diagonal element

of its Hessian are respectively given by

∂gi

󰀓
δ | δ(n)

󰀔

∂δj

󰀏󰀏󰀏󰀏󰀏󰀏
δ=δ(n)

= [j ∈ Ai]

󰀣
−ρi

󰀓
δj | δ(n)

󰀔󰁝 1

0

zρi(δj |δ
(n))

1− zρi(δj |δ
(n))

ln (z)πi

󰀓
z | δ(n)

󰀔
dz

󰀤󰀏󰀏󰀏󰀏󰀏
δ=δ(n)

+
󰀅
j ∈ Ai

󰀆
󰀣
ρi

󰀓
δ
(n)
j | δ(n)

󰀔
+ ρi

󰀓
δj | δ(n)

󰀔󰁝 1

0

ln (z)πi

󰀓
z | δ(n)

󰀔
dz

󰀤󰀏󰀏󰀏󰀏󰀏
δ=δ(n)

,

∂2gi

󰀓
δ | δ(n)

󰀔

∂δ2j

󰀏󰀏󰀏󰀏󰀏󰀏
δ=δ(n)

= [j ∈ Ai]

󰀣
− ρi

󰀓
δj | δ(n)

󰀔󰁝 1

0

zρi(δj |δ
(n))

1− zρi(δj |δ
(n))

ln (z)πi

󰀓
z | δ(n)

󰀔
dz

− ρi

󰀓
δj | δ(n)

󰀔2
󰁝 1

0

zρi(δj |δ
(n))

󰁫
1− zρi(δj |δ

(n))
󰁬2 ln (z)

2πi

󰀓
z | δ(n)

󰀔
dz

󰀤󰀏󰀏󰀏󰀏󰀏󰀏󰀏
δ=δ(n)

+
󰀅
j ∈ Ai

󰀆
󰀣
ρi

󰀓
δj | δ(n)

󰀔󰁝 1

0

ln (z)πi

󰀓
z | δ(n)

󰀔
dz

󰀤󰀏󰀏󰀏󰀏󰀏
δ=δ(n)

.

Therefore, since the Hessian is diagonal, the gradient ascent update for the jth component of δ(n)

takes the form

δ
(n+1)
j = δ

(n)
j +

󰁓
i∈I ρ

(n)
ij κ

(n)
ij󰁓

i∈I ρ
(n)
ij λ

(n)
ij

, (E.8)

where

κ
(n)
ij =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

−
󰁕 1

0
z
ρ
(n)
ij

1−z
ρ
(n)
ij

ln (z)π
(n)
i (z) dz if j ∈ Ai

1 +
󰁕 1

0
ln (z)π

(n)
i (z) dz if j ∈ Ai

,

λ
(n)
ij =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

󰁕 1

0
z
ρ
(n)
ij

1−z
ρ
(n)
ij

ln (z)π
(n)
i (z) dz + ρ

(n)
ij

󰁕 1

0
z
ρ
(n)
ij󰀃

1−z
ρ
(n)
ij

󰀄2
ln (z)2π

(n)
i (z) dz if j ∈ Ai

−
󰁕 1

0
ln (z)π

(n)
i (z) dz if j ∈ Ai

,

ρ
(n)
ij = ρi

󰀓
δ
(n)
j | δ(n)

󰀔
, π

(n)
i (z) = πi

󰀓
z | δ(n)

󰀔
, and all the integrals involved can be approximated

by numerical quadrature. Finally, since the level of δ is not identified, we impose the normalizations󰀏󰀏󰀏󰀏δ(0)
󰀏󰀏󰀏󰀏 = 1 and

󰁓
j∈J exp

󰀃
δ
(N+1)
j

󰀄
= 1 for the initial (n = 0) and terminal (n = N + 1) values,

respectively.
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F Data description

This appendix. . . This is old

and infor-

mal stuff...

will need

rewriting.

This is old

and infor-

mal stuff...

will need

rewriting.

F.1 Job advertisements

Number of vacancies: A small number of job ads —6 out of 1,137,965, mapping to 54 of

39,480,855 applications— report zero vacancies being offered in the raw data. We treat the number

of vacancies as missing for these observations.

Hours of work: Combined the two part-time categories into one (the distinction was only nom-

inal).

Ad availability (dates and duration): Some of the reported publication and expiry dates and

durations of job ads are nonsensical, leading to many application dates falling out of the reported

ad availability period. We redefine job ad availability periods as spells of clustered applications

according to the following procedure.

1. Define the maximum length (in days) of an application cluster, τ . If two consecutive applica-

tions to a given ad are more than τ days apart, they belong to different application clusters.

We set τ = 120 days.

2. For each job ad j identified by the unique ad ID in the raw data, let d1
j = (d1j1, . . . , d

1
jTj

)′

be a column vector containing the Tj numerical dates in which ad j received at least one

application in ascending order, where numerical values are assigned to dates following, e.g.,

Stata’s convention.

3. Assign all dates d1jt such that d1jt − d1j1 + 1 ≤ τ to the first application-cluster spell.

4. If all application dates fall within τ dates of the first application date, stop —and job ad j

has only one application-cluster spell. Otherwise, if the first application date more than τ

days apart from the first application date is the t
th
1 one —i.e., d1jt − d1j1 + 1 ≤ τ ∀ t ≤ t1 − 1

and d1jt−d1j1+1 > τ ∀ t ≥ t1—, repeat the previous steps for Let d2
j = (d2j1, . . . , d

2
j(Tj−t1+1)

)′ =

(d1
jt1
, . . . , d1jTj

)′.

The algorithm stops at a nth iteration when dim (dn
j ) > 0 and dim (dn+1

j ) = 0, producing n

distinct application-cluster spells with durations of at most τ days. We define a new ad ID that

maps to unique combinations of the original ad ID (j) and application-cluster spell (s).

Finally, we exploit the information contained in the original publication and expiry dates

reported in the raw data by imputing the corresponding ad-availability spell publication and expiry
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dates as folows. Let djs = (djs1, . . . , djsTjs
)′ be a column vector containing the applications dates

corresponding to application-cluster spell s of ad j in ascending order. We impute the publication

date of ad j’s sth availability spell, tjs, as ad j’s originally reported publication date, dj, if the

first application occurred at most ∆ days after. Otherwise, we use the first application date of the

application-cluster spell. That is, we define

tjs =

󰀻
󰁁󰀿

󰁁󰀽

dj if djs1 ∈
󰀅
dj, dj +∆

󰀆

djs1 otherwise

.

Similarly, if the corresponding application-cluster spell contains more than one application date,

we impute the expiry date of availability spell (j, s), tjs, as the originally reported expiry date

of ad j in the raw data, dj, if the last application occurred at most ∆ days before, and the last

application date otherwise. In the special case of unit duration —i.e., Tjs = 1—
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