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Problem 1 [Harder]

For a > 0, consider the problem:

max
x ,y

ax + y

s.t. x 2 + (x − y)2 ≤ 1

x ≥ a, y ≥ 0.

Using the Kuhn-Tucker approach, write down the necessary first order
conditions that must be satisfied by the solution of the constrained
optimization problem. Are solutions to these conditions also
maximizers of the Lagrangian? Solve the constrained optimization
problem in terms of a. Find the slope of value function with respect to
a, possibly relying on the Envelope Theorem.
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Slater condition:

Note that constraints require

a2 ≤ x 2 + (x − y)2 ≤ 1.
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Slater condition:

Note that constraints require

a2 ≤ x 2 + (x − y)2 ≤ 1.

The constraint set has a nonempty interior only when a < 1.
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Slater condition:

Note that constraints require

a2 ≤ x 2 + (x − y)2 ≤ 1.

The constraint set has a nonempty interior only when a < 1.

It collapses to a singleton when a = 1, and

it is an empty set when a > 1.
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Lagrangian:

L(x , y ,λ | a) = ax + y − λ1(x
2 + (x − y)2 − 1)− λ2(a − x ) + λ3y
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Lagrangian:

L(x , y ,λ | a) = ax + y − λ1(x
2 + (x − y)2 − 1)− λ2(a − x ) + λ3y

Necessary FOC:

a − λ∗
1(4x

∗ − 2y∗) + λ∗
2 = 0[x ]

1− 2λ∗
1(y

∗ − x ∗) + λ∗
3 = 0[y ]

λ∗
1 ≥ 0, x ∗2 + (x ∗ − y∗)2 ≤ 1,λ∗

1

󰀅
x ∗2 + (x ∗ − y∗)2 − 1

󰀆
= 0[λ1]

λ∗
2 ≥ 0, x ∗ ≥ a,λ∗

2(x
∗ − a) = 0[λ2]

λ∗
3 ≥ 0, y∗ ≥ 0,λ∗

3y
∗ = 0[λ3]
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Any solution to these conditions is a maximizer of the Lagrangian
as it is the sum of concave functions and thus concave.



Class #3

EC400: SOFP

Problem 1

Problem 5

Problem 7

7/19

Problem 1 [Harder]

Any solution to these conditions is a maximizer of the Lagrangian
as it is the sum of concave functions and thus concave.

To solve the system, let’s consider all the possible cases in terms
of which constraints are binding.
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Suppose λ∗
1 = 0. Then, from [y ], λ∗

3 = −1 < 0, contradicting [λ3].
Thus, λ∗

1 > 0 .
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Suppose λ∗
1 = 0. Then, from [y ], λ∗

3 = −1 < 0, contradicting [λ3].
Thus, λ∗

1 > 0 .

Suppose λ∗
3 > 0. Then, y∗ = 0. From [y ]: λ∗

3 = − (1 + 2λ∗
1x

∗) < 0

since λ∗
1 > 0 and x ∗ ≥ a > 0. Hence, λ∗

3 = 0 .
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2 > 0.
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Suppose λ∗
2 > 0.

Then, x ∗ = a .
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Suppose λ∗
2 > 0.

Then, x ∗ = a .

From [λ1]: y∗ = a +
√
1− a2 since λ∗

1 > 0.
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Suppose λ∗
2 > 0.

Then, x ∗ = a .

From [λ1]: y∗ = a +
√
1− a2 since λ∗

1 > 0.

For this solution to be well-defined: 1− a2 > 0 ⇐⇒ a < 1
(remember a > 0) which holds under the Slater condition.
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Suppose λ∗
2 > 0.

Then, x ∗ = a .

From [λ1]: y∗ = a +
√
1− a2 since λ∗

1 > 0.

For this solution to be well-defined: 1− a2 > 0 ⇐⇒ a < 1
(remember a > 0) which holds under the Slater condition.

From [y ]: λ∗
1 =

1
2
√
1−a2

> 0 󰃀.
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Suppose λ∗
2 > 0.

Then, x ∗ = a .

From [λ1]: y∗ = a +
√
1− a2 since λ∗

1 > 0.

For this solution to be well-defined: 1− a2 > 0 ⇐⇒ a < 1
(remember a > 0) which holds under the Slater condition.

From [y ]: λ∗
1 =

1
2
√
1−a2

> 0 󰃀.

From [x ]: λ∗
2 =

a√
1−a2

− 1− a ≥ 0 ⇐⇒ a ≥ 0.8832 . So, this is a

solution for sufficiently high a .
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Alternatively, suppose λ∗
2 = 0.
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Alternatively, suppose λ∗
2 = 0.

From [x ]: λ∗
1 =

a
2(2x∗−y∗) . From [y ]: λ∗

1 =
1

2(y∗−x∗) . Thus,

y∗ = 2+a
1+a x

∗ .
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Alternatively, suppose λ∗
2 = 0.

From [x ]: λ∗
1 =

a
2(2x∗−y∗) . From [y ]: λ∗

1 =
1

2(y∗−x∗) . Thus,

y∗ = 2+a
1+a x

∗ .

From [λ1]: x ∗ = 1+a√
(1+a)2+1

=⇒ y∗ = 2+a√
(1+a)2+1

.
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Alternatively, suppose λ∗
2 = 0.

From [x ]: λ∗
1 =

a
2(2x∗−y∗) . From [y ]: λ∗

1 =
1

2(y∗−x∗) . Thus,

y∗ = 2+a
1+a x

∗ .

From [λ1]: x ∗ = 1+a√
(1+a)2+1

=⇒ y∗ = 2+a√
(1+a)2+1

.

Then, λ∗
1 =

√
(1+a2)+1

2 > 0 󰃀.
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Alternatively, suppose λ∗
2 = 0.

From [x ]: λ∗
1 =

a
2(2x∗−y∗) . From [y ]: λ∗

1 =
1

2(y∗−x∗) . Thus,

y∗ = 2+a
1+a x

∗ .

From [λ1]: x ∗ = 1+a√
(1+a)2+1

=⇒ y∗ = 2+a√
(1+a)2+1

.

Then, λ∗
1 =

√
(1+a2)+1

2 > 0 󰃀.

Finally, check x ∗(a) ≥ a ⇐⇒ a ≤ 0.8832 . So, this is a solution
for sufficiently small a .
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Envelope theorem: If (x ∗(a), y∗(a),λ∗(a)) are differentiable and
(x ∗(a), y∗(a)) satisfies the constraint qualification, then

dv(a)

da
=

∂L(x ∗(a), y∗(a),λ∗(a) | a)
∂a

= x ∗(a)− λ∗
2(a)

=

󰀻
󰁁󰀿

󰁁󰀽

1+a√
(1+a)2+1

if a ≤ 0.8832

2a + 1− a√
1−a2 if a ≥ 0.8832

.
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Problem 5

For each of the following correspondences h : R 󰃃 R show whether
they are convex- valued, upper-hemicontinuous or
lower-hemicontinuous:

(a) h(x ) = [5x , 10x ) for x ∈ [0, 1];

(b) h(x ) = {5x , 10x} for x ∈ [0, 1];

(c) h(x ) =

󰀻
󰀿

󰀽

1
2

for x ∈ [0, 1)

[0, 1] for x = 1

.
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Problem 5
Solution: Part (a)

h(x ) = [5x , 10x ) for x ∈ [0, 1]

0 1
0

5

10

x

y
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h(x ) = [5x , 10x ) for x ∈ [0, 1]

0 1
0

5

10

x

y
Open graph =⇒ not UHC.
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h(x ) = [5x , 10x ) for x ∈ [0, 1]

0 1
0

5

10

x

y
Open graph =⇒ not UHC.

Set [5x , 10x ) convex ∀ x ∈ [0, 1]
=⇒ convex-valued.
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Problem 5
Solution: Part (a)

h(x ) = [5x , 10x ) for x ∈ [0, 1]

0 1
0

5

10

x

y
Open graph =⇒ not UHC.

Set [5x , 10x ) convex ∀ x ∈ [0, 1]
=⇒ convex-valued.

∀ (x , y) ∈ Gr (h), ∀ {xk}∞k=1 : xk → x ,
∃ {yk}∞k=1 : yk ∈ [5x , 10x ) ∀ k ∈ N and
yk → y . Thus, LHC.
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Solution: Part (b)

h(x ) = {5x , 10x} for x ∈ [0, 1]

0 1
0

5

10

x

y
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Solution: Part (b)

h(x ) = {5x , 10x} for x ∈ [0, 1]

0 1
0

5

10

x

y

Graph closed and union of
continuous functions
=⇒ both UHC and LHC.
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Problem 5
Solution: Part (b)

h(x ) = {5x , 10x} for x ∈ [0, 1]

0 1
0

5

10

x

y

Graph closed and union of
continuous functions
=⇒ both UHC and LHC.

∄x ∈ [0, 1] : set {5x , 10x} convex =⇒
not convex-valued.



Class #3

EC400: SOFP

Problem 1

Problem 5

Problem 7

15/19

Problem 5
Solution: Part (c)

h(x ) =

󰀻
󰀿

󰀽

1
2

for x ∈ [0, 1)

[0, 1] for x = 1

0 1
0

1
2

1

x

y
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h(x ) =

󰀻
󰀿

󰀽

1
2

for x ∈ [0, 1)

[0, 1] for x = 1

0 1
0

1
2

1

x

y

Graph closed =⇒ UHC.
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Solution: Part (c)

h(x ) =

󰀻
󰀿

󰀽

1
2

for x ∈ [0, 1)

[0, 1] for x = 1

0 1
0

1
2

1

x

y

Graph closed =⇒ UHC.

Sets
󰀋

1
2

󰀌
and [0, 1] convex =⇒

convex-valued.
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Solution: Part (c)

h(x ) =

󰀻
󰀿

󰀽

1
2

for x ∈ [0, 1)

[0, 1] for x = 1

0 1
0

1
2

1

x

y

Graph closed =⇒ UHC.

Sets
󰀋

1
2

󰀌
and [0, 1] convex =⇒

convex-valued.

(1, 1) ∈ Gr (h), but ∀ {xk}∞k=1 : xk → 1,
yk → 1

2
. Thus, not LHC.
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Problem 7

Consider the correspondence h : R2 󰃃 R2, where h(x) = (h1(x),
h2(x)),

h1(x) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

{1} if x2 >
1
3

[0, 1] if x2 =
1
3

{0} if x2 <
1
3

and h2(x) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

{1} if x1 <
1
2

[0, 1] if x1 =
1
2

{0} if x1 >
1
2

.

Show how you can expolit Kakutani’s Fixed Point Theorem despite the
domain being open, and find all the fixed points.
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Solution

0 1
3

1
2

1
0

1
3

1
2

1

x1

x2 h1(x2)
h2(x1)
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Solution

Both correspondences have closed graphs =⇒ UHC. Both are
obviously non-empty and convex-valued.
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Both correspondences have closed graphs =⇒ UHC. Both are
obviously non-empty and convex-valued.

The image of h belongs to [0, 1]2. We can restrict the domain to
[0, 1]2 and Kakutani’s FP theorem applies: ∃ FP in [0, 1]2.
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Problem 7
Solution

Both correspondences have closed graphs =⇒ UHC. Both are
obviously non-empty and convex-valued.

The image of h belongs to [0, 1]2. We can restrict the domain to
[0, 1]2 and Kakutani’s FP theorem applies: ∃ FP in [0, 1]2.

Moreover, ∄ FP in R2 \ [0, 1]2 since the image is in [0, 1]2.
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Finding all the FPs:
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Finding all the FPs:

x1 =
1
2 =⇒ h2(x1) = [0, 1] =⇒ x1 ∈ h2(x1).
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Finding all the FPs:

x1 =
1
2 =⇒ h2(x1) = [0, 1] =⇒ x1 ∈ h2(x1).

x2 =
1
3 =⇒ h1(x2) = [0, 1] =⇒ x2 ∈ h1(x2).

Thus,
󰀃
1
2 ,

1
3

󰀄
is a FP.
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Finding all the FPs:

x1 =
1
2 =⇒ h2(x1) = [0, 1] =⇒ x1 ∈ h2(x1).

x2 =
1
3 =⇒ h1(x2) = [0, 1] =⇒ x2 ∈ h1(x2).

Thus,
󰀃
1
2 ,

1
3

󰀄
is a FP.

It is the only FP.


