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Problem 1

Find critical points, local maxima and local minima for each of the
following functions:

(a) x 4 + x 2 − 6xy + 3y2

(b) x 2 − 6xy + 2y2 + 10x + 2y − 5

(c) xy2 + x 3y − xy

Which of the critical points are also global maxima or global minima?
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Problem 1
Solution: Part (a)

Find critical points:

Df (x ∗, y∗)′ =

󰀳

󰁃
4x ∗3 + 2x ∗ − 6y∗

−6x ∗ + 6y∗

󰀴

󰁄 =

󰀳

󰁃
0

0

󰀴

󰁄

=⇒ (x ∗, y∗) ∈ {(0, 0), (1, 1), (−1,−1)} .

details
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Problem 1
Solution: Part (a)

Obtain the Hessian:

D2f (x , y) =

󰀳

󰁃
12x 2 + 2 −6

−6 6

󰀴

󰁄 .
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Problem 1
Solution: Part (a)

Obtain the Hessian:

D2f (x , y) =

󰀳

󰁃
12x 2 + 2 −6

−6 6

󰀴

󰁄 .

The LPMs are:
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Problem 1
Solution: Part (a)

Obtain the Hessian:

D2f (x , y) =

󰀳

󰁃
12x 2 + 2 −6

−6 6

󰀴

󰁄 .

The LPMs are:

det (L1) = det
󰀃
12x 2 + 2

󰀄
= 12x 2 + 2.
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Problem 1
Solution: Part (a)

Obtain the Hessian:

D2f (x , y) =

󰀳

󰁃
12x 2 + 2 −6

−6 6

󰀴

󰁄 .

The LPMs are:

det (L1) = det
󰀃
12x 2 + 2

󰀄
= 12x 2 + 2.

det (L2) = det
󰀃
D2f (x , y)

󰀄
= 6(12x 2 + 2)− 36 = 72x 2 − 24.
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Problem 1
Solution: Part (a)

Check definiteness of the Hessian at each critical point:
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Problem 1
Solution: Part (a)

Check definiteness of the Hessian at each critical point:

At (0, 0): |L1| = 2 > 0 and |L2| = −24 < 0 =⇒ indefinite =⇒
saddle point.
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Problem 1
Solution: Part (a)

Check definiteness of the Hessian at each critical point:

At (0, 0): |L1| = 2 > 0 and |L2| = −24 < 0 =⇒ indefinite =⇒
saddle point.

At (1, 1): |L1| = 14 > 0 and |L2| = 48 > 0 =⇒ p.d. =⇒ strict
local min.
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Problem 1
Solution: Part (a)

Check definiteness of the Hessian at each critical point:

At (0, 0): |L1| = 2 > 0 and |L2| = −24 < 0 =⇒ indefinite =⇒
saddle point.

At (1, 1): |L1| = 14 > 0 and |L2| = 48 > 0 =⇒ p.d. =⇒ strict
local min.

At (−1,−1): |L1| = 14 > 0 and |L2| = 48 > 0 =⇒ p.d. =⇒ strict
local min.
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Problem 1
Solution: Part (a)

Look for global max:
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Problem 1
Solution: Part (a)

Look for global max:
The function is unbounded above =⇒ no global max:

f (x , x ) = x 4 − 2x −→
x→∞

∞.
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Problem 1
Solution: Part (a)

Look for global max:
The function is unbounded above =⇒ no global max:

f (x , x ) = x 4 − 2x −→
x→∞

∞.

Look for global min:
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Problem 1
Solution: Part (a)

Look for global max:
The function is unbounded above =⇒ no global max:

f (x , x ) = x 4 − 2x −→
x→∞

∞.

Look for global min:
(1, 1) and (−1,−1) are global minima:

f (x , y) = 3(x − y)2󰁿 󰁾󰁽 󰂀
≥0

+ x 2(x 2 − 2)󰁿 󰁾󰁽 󰂀
min at x2=1

.

details



Class #2

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

6/47

Problem 1
Solution: Part (b)

Find critical points:

Df (x ∗, y∗)′ =

󰀳

󰁃
2x ∗ − 6y∗ + 10

−6x ∗ + 4y∗ + 2

󰀴

󰁄 =

󰀳

󰁃
0

0

󰀴

󰁄

=⇒ (x ∗, y∗) ∈
󰀝󰀕

13

7
,
16

7

󰀖󰀞
.
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Problem 1
Solution: Part (b)

Obtain the Hessian:

D2f (x , y) =

󰀣
2 −6

−6 4

󰀤
.
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Problem 1
Solution: Part (b)

Obtain the Hessian:

D2f (x , y) =

󰀣
2 −6

−6 4

󰀤
.

Not a local extremum since the Hessian is indefinite: The LPMs
are
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Problem 1
Solution: Part (b)

Obtain the Hessian:

D2f (x , y) =

󰀣
2 −6

−6 4

󰀤
.

Not a local extremum since the Hessian is indefinite: The LPMs
are

det (L1) = det
󰀃
2
󰀄
= 2 > 0 ∀(x , y) ∈ R2.
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Problem 1
Solution: Part (b)

Obtain the Hessian:

D2f (x , y) =

󰀣
2 −6

−6 4

󰀤
.

Not a local extremum since the Hessian is indefinite: The LPMs
are

det (L1) = det
󰀃
2
󰀄
= 2 > 0 ∀(x , y) ∈ R2.

det (L2) = det
󰀃
D2f (x , y)

󰀄
= 8− 36 = −28 < 0 ∀(x , y) ∈ R2.
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Problem 1
Solution: Part (b)

No global max since the function is unbounded from above:

lim
x→∞

f (x , 0) = lim
x→∞

x 2 + 10x − 5 = +∞.
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Problem 1
Solution: Part (b)

No global max since the function is unbounded from above:

lim
x→∞

f (x , 0) = lim
x→∞

x 2 + 10x − 5 = +∞.

No global min since the function is unbounded from below:

lim
x→∞

f (x , x ) = lim
x→∞

−3x 2 + 12x − 5 = −∞.



Class #2

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

9/47

Problem 1
Solution: Part (c)

Find critical points:

Df (x ∗, y∗)′ =

󰀳

󰁃
y∗2 + 3x ∗2y∗ − y∗

2x ∗y∗ + 6x ∗3 − x ∗

󰀴

󰁄 =

󰀳

󰁃
0

0

󰀴

󰁄

=⇒ (x ∗, y∗) ∈
󰀝
(0, 0), (0, 1), (−1, 0), (1, 0),

󰀕
− 1√

5
,
2

5

󰀖
,

󰀕
1√
5
,
2

5

󰀖󰀞
.

details
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Problem 1
Solution: Part (c)

Obtain the Hessian:

D2f (x , y) =

󰀳

󰁃
6xy 2y + 3x 2 − 1

2y + 3x 2 − 1 2x

󰀴

󰁄 .
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Problem 1
Solution: Part (c)

Obtain the Hessian:

D2f (x , y) =

󰀳

󰁃
6xy 2y + 3x 2 − 1

2y + 3x 2 − 1 2x

󰀴

󰁄 .

The LPMs are:



Class #2

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

10/47

Problem 1
Solution: Part (c)

Obtain the Hessian:

D2f (x , y) =

󰀳

󰁃
6xy 2y + 3x 2 − 1

2y + 3x 2 − 1 2x

󰀴

󰁄 .

The LPMs are:

det (L1) = det
󰀃
6xy

󰀄
= 6xy .
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Problem 1
Solution: Part (c)

Obtain the Hessian:

D2f (x , y) =

󰀳

󰁃
6xy 2y + 3x 2 − 1

2y + 3x 2 − 1 2x

󰀴

󰁄 .

The LPMs are:

det (L1) = det
󰀃
6xy

󰀄
= 6xy .

det (L2) = det
󰀃
D2f (x , y)

󰀄
= 12x 2y − (2y + 3x 2 − 1)2 =

−9x 4 + 6x 2 − 4y2 + 4y − 1.
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Problem 1
Solution: Part (c)

Check definiteness of the Hessian at each critical point:
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Problem 1
Solution: Part (c)

Check definiteness of the Hessian at each critical point:

At (0, 0): |L1| = 0 and |L2| = −1 < 0 =⇒ indefinite =⇒ saddle
point.
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Problem 1
Solution: Part (c)

Check definiteness of the Hessian at each critical point:

At (0, 0): |L1| = 0 and |L2| = −1 < 0 =⇒ indefinite =⇒ saddle
point.

At (0, 1): |L1| = 0 and |L2| = −1 < 0 =⇒ indefinite =⇒ saddle
point.
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Problem 1
Solution: Part (c)

Check definiteness of the Hessian at each critical point:

At (0, 0): |L1| = 0 and |L2| = −1 < 0 =⇒ indefinite =⇒ saddle
point.

At (0, 1): |L1| = 0 and |L2| = −1 < 0 =⇒ indefinite =⇒ saddle
point.

At (1, 0): |L1| = 0 and |L2| = −4 < 0 =⇒ indefinite =⇒ saddle
point.
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Problem 1
Solution: Part (c)

At (−1, 0): |L1| = 0 and |L2| = −1 < 0 =⇒ indefinite =⇒ saddle
point.
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Problem 1
Solution: Part (c)

At (−1, 0): |L1| = 0 and |L2| = −1 < 0 =⇒ indefinite =⇒ saddle
point.

At
󰀓

1√
5
, 25

󰀔
: |L1| = 12/53/2 > 0 and |L2| = 4/5 > 0 =⇒ p.d. =⇒

strict local min.
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Problem 1
Solution: Part (c)

At (−1, 0): |L1| = 0 and |L2| = −1 < 0 =⇒ indefinite =⇒ saddle
point.

At
󰀓

1√
5
, 25

󰀔
: |L1| = 12/53/2 > 0 and |L2| = 4/5 > 0 =⇒ p.d. =⇒

strict local min.

At
󰀓
− 1√

5
, 25

󰀔
: |L1| = −12/53/2 < 0 and |L2| = 4/5 > 0 =⇒ n.d.

=⇒ strict local max.
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Problem 1
Solution: Part (b)

No global max since the function is unbounded from above:

lim
x→∞

f (x , x ) = lim
x→∞

x 3 + x 4 − x 2 = +∞.



Class #2

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

13/47

Problem 1
Solution: Part (b)

No global max since the function is unbounded from above:

lim
x→∞

f (x , x ) = lim
x→∞

x 3 + x 4 − x 2 = +∞.

No global min since the function is unbounded from below:

lim
x→∞

f (x ,−x ) = lim
x→∞

x 3 − x 4 + x 2 = −∞.
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Problem 2

Let S ⊂ Rn be an open set and f : S → R be a twice-continuously
differentiable function. Suppose that Df (x∗) = 0. State the weakest
sufficient conditions that the Hessian must satisfy at the critical point
x∗ for:

x∗ to be a local max;

x∗ to be a strict local min.
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Problem 2
Solution

For a local max:

∃ ε > 0 : D2f (x) ≤ 0 ∀ x ∈ B(x∗ | ε)

where B(x∗ | ε) ≡ {y ∈ Rn : ||y − x|| < ε}.
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Problem 2
Solution

For a local max:

∃ ε > 0 : D2f (x) ≤ 0 ∀ x ∈ B(x∗ | ε)

where B(x∗ | ε) ≡ {y ∈ Rn : ||y − x|| < ε}.

For a strict local min:

D2f (x∗) ≥ 0 and ∃ ε > 0 : D2f (x) > 0 ∀ x ∈ B(x∗ | ε)

where B(x∗ | ε) ≡ B(x∗ | ε) \ {x∗}.
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Problem 3

Check whether f (x , y) = x 4 + x 2y2 + y4 − 3x − 8y is concave or
convex by using the Hessian.
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Problem 3
Solution

Obtain the Hessian:

Df (x , y)′ =

󰀳

󰁃
4x 3 + 2xy2 − 3

2x 2y + 4y3 − 8

󰀴

󰁄
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Problem 3
Solution

Obtain the Hessian:

Df (x , y)′ =

󰀳

󰁃
4x 3 + 2xy2 − 3

2x 2y + 4y3 − 8

󰀴

󰁄

D2f (x , y) =

󰀳

󰁃
12x 2 + 2y2 4xy

4xy 2x 2 + 12y2

󰀴

󰁄
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Problem 3
Solution

Check the principal minors:

det

󰀳

󰁃
12x 2 + 2y2 4xy

4xy 2x 2 + 12y2

󰀴

󰁄 = 24(x 4 + y4) + 132x 2y2 ≥ 0,
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Problem 3
Solution

Check the principal minors:

det

󰀳

󰁃
12x 2 + 2y2 4xy

4xy 2x 2 + 12y2

󰀴

󰁄 = 24(x 4 + y4) + 132x 2y2 ≥ 0,

det
󰀃
12x 2 + 2y2

󰀄
= 12x 2 + 2y2 ≥ 0, and
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Problem 3
Solution

Check the principal minors:

det

󰀳

󰁃
12x 2 + 2y2 4xy

4xy 2x 2 + 12y2

󰀴

󰁄 = 24(x 4 + y4) + 132x 2y2 ≥ 0,

det
󰀃
12x 2 + 2y2

󰀄
= 12x 2 + 2y2 ≥ 0, and

det
󰀃
2x 2 + 12y2

󰀄
= 2x 2 + 12y2 ≥ 0.
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Problem 3
Solution

Check the principal minors:

det

󰀳

󰁃
12x 2 + 2y2 4xy

4xy 2x 2 + 12y2

󰀴

󰁄 = 24(x 4 + y4) + 132x 2y2 ≥ 0,

det
󰀃
12x 2 + 2y2

󰀄
= 12x 2 + 2y2 ≥ 0, and

det
󰀃
2x 2 + 12y2

󰀄
= 2x 2 + 12y2 ≥ 0.

All principal minors ≥ 0 =⇒ Hessian is p.s.d. =⇒ f (·) is convex
on R2.
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Problem 4 [Harder]

Solve the following problem

max
x ,y

󰀅
min {x , y}− x 2 − y2

󰀆
.
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Problem 4 [Harder]
Solution

Can’t use FOC since differentiability fails. What can we do?
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Problem 4 [Harder]
Solution

Can’t use FOC since differentiability fails. What can we do?

It turns out we can easily show that x ∗ = y∗ at any solution.
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Problem 4 [Harder]
Solution

Can’t use FOC since differentiability fails. What can we do?

It turns out we can easily show that x ∗ = y∗ at any solution.

Let f (x , y) = min {x , y}− x 2 − y2 and WLOG suppose that
x ∗ > y∗.
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Problem 4 [Harder]
Solution

Let z ∗ = x∗+y∗

2
and note that
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Solution

Let z ∗ = x∗+y∗

2
and note that

y∗ + y∗ < x ∗ + y∗ < x ∗ + x ∗
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Problem 4 [Harder]
Solution

Let z ∗ = x∗+y∗

2
and note that

y∗ + y∗ < x ∗ + y∗ < x ∗ + x ∗ ⇐⇒ y∗ < z ∗ < x ∗.
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Solution

Let z ∗ = x∗+y∗

2
and note that

y∗ + y∗ < x ∗ + y∗ < x ∗ + x ∗ ⇐⇒ y∗ < z ∗ < x ∗.

By concavity of −x 2 and Jensen’s inequality,

−1

2
x ∗2 − 1

2
y∗2 < −

󰀕
x ∗ + y∗

2

󰀖2
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Problem 4 [Harder]
Solution

Let z ∗ = x∗+y∗

2
and note that

y∗ + y∗ < x ∗ + y∗ < x ∗ + x ∗ ⇐⇒ y∗ < z ∗ < x ∗.

By concavity of −x 2 and Jensen’s inequality,

−1

2
x ∗2 − 1

2
y∗2 < −

󰀕
x ∗ + y∗

2

󰀖2

⇐⇒ −x ∗2 − y∗2 < −2z ∗2.



Class #2

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

22/47

Problem 4 [Harder]
Solution

Therefore,
f (x ∗, y∗) = min {x ∗, y∗}− x ∗2 − y∗2
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Problem 4 [Harder]
Solution

Therefore,
f (x ∗, y∗) = min {x ∗, y∗}− x ∗2 − y∗2

= y∗ − x ∗2 − y∗2
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= y∗ − x ∗2 − y∗2

< z ∗ − x ∗2 − y∗2
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= y∗ − x ∗2 − y∗2
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< z ∗ − 2z ∗2
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Therefore,
f (x ∗, y∗) = min {x ∗, y∗}− x ∗2 − y∗2

= y∗ − x ∗2 − y∗2

< z ∗ − x ∗2 − y∗2

< z ∗ − 2z ∗2

= min {z ∗, z ∗}− z ∗2 − z ∗2
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Problem 4 [Harder]
Solution

Therefore,
f (x ∗, y∗) = min {x ∗, y∗}− x ∗2 − y∗2

= y∗ − x ∗2 − y∗2

< z ∗ − x ∗2 − y∗2

< z ∗ − 2z ∗2

= min {z ∗, z ∗}− z ∗2 − z ∗2

= f (z ∗, z ∗),
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Problem 4 [Harder]
Solution

Therefore,
f (x ∗, y∗) = min {x ∗, y∗}− x ∗2 − y∗2

= y∗ − x ∗2 − y∗2

< z ∗ − x ∗2 − y∗2

< z ∗ − 2z ∗2

= min {z ∗, z ∗}− z ∗2 − z ∗2

= f (z ∗, z ∗),

which is a contradiction since f (x ∗, y∗) ≥ f (x , y) ∀(x , y) ∈ R2.
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Solution

Finally, since we know x ∗ = y∗, the problem simplifies to

max
x

x − 2x 2.
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Problem 4 [Harder]
Solution

Finally, since we know x ∗ = y∗, the problem simplifies to

max
x

x − 2x 2.

FOC: ∂ f̃ (x∗)
∂x = 1− 4x ∗ = 0 =⇒ (x ∗, y∗) = (14 ,

1
4).
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Problem 4 [Harder]
Solution

Finally, since we know x ∗ = y∗, the problem simplifies to

max
x

x − 2x 2.

FOC: ∂ f̃ (x∗)
∂x = 1− 4x ∗ = 0 =⇒ (x ∗, y∗) = (14 ,

1
4).

SOC: ∂2 f̃ (x∗)
x2 = −4 < 0, so the objective function is concave and

we have found the solution.



Problem 5



Class #2

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

24/47

Problem 5

Find the optimal solution for the following program

max
x ,y

x subject to x 3 + y2 = 0.

Is the Lagrange approach appropriate?
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Problem 5
Solution

The constraint qualification fails:

(x , y) = (0, 0), a critical point of the constraint, belongs to the
constraint set, so the procedure is not well defined and we cannot
use the Lagrange Theorem.
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Problem 5
Solution

The constraint qualification fails:

(x , y) = (0, 0), a critical point of the constraint, belongs to the
constraint set, so the procedure is not well defined and we cannot
use the Lagrange Theorem.

To see this, note that (0, 0) solves

Dh(x , y)′ =

󰀣
3x 2

2y

󰀤
=

󰀣
0

0

󰀤

while it satisfies h(0, 0) = 0, where h(x , y) = x 3 + y2 is the
constraint function.
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Problem 5
Solution

While the Lagrange method is not appropriate, it is easy to see that
(x ∗, y∗) = (0, 0) is a solution.

Notice that the solution (x ∗, y∗) = (0, 0) is not a critical point of the
Lagrangian. There is no solution to the FOC

1− 3λx 2 = 0; 2λy = 0, x 3 + y2 = 0
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Problem 6

Solve the following problem

max
x1,x2

x 2
1 x2 subject to 2x 2

1 + x 2
2 = 3.
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Solution

Check the constraint qualification:
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Problem 6
Solution

Check the constraint qualification:

It is satisfied. The only critical point of the constraint is
(x1, x2) = (0, 0), the only solution to

Dh(x1, x2)
′ =

󰀣
4x1

2x2

󰀤
=

󰀣
0

0

󰀤
,

and it is not in the constraint set as it does not satisfy

h(x1, x2) = 2x 2
1 + x 2

2 − 3 = 0.
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Problem 6
Solution

Form the Lagrangian:

L(x1, x2, µ) = x 2
1 x2 − µ(2x 2

1 + x 2
2 − 3)
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Problem 6
Solution

Form the Lagrangian:

L(x1, x2, µ) = x 2
1 x2 − µ(2x 2

1 + x 2
2 − 3)

Take the FOC:
∂L(x1, x2, µ)

∂x1
= 2x1x2 − 4µx1 = 0[x1]

∂L(x1, x2, µ)
∂x2

= x 2
1 − 2µx2 = 0[x2]

∂L(x1, x2, µ)
∂µ

= 2x 2
1 + x 2

2 − 3 = 0[µ]
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Problem 6
Solution

Solve to find the critical points:
(0,

√
3, 0), (0,−

√
3, 0), (1, 1, 1/2), (−1,−1,−1/2), (1,−1,−1/2),

and (−1, 1, 1/2). details
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Problem 6
Solution

Solve to find the critical points:
(0,

√
3, 0), (0,−

√
3, 0), (1, 1, 1/2), (−1,−1,−1/2), (1,−1,−1/2),

and (−1, 1, 1/2). details

Finally, compact constraint set =⇒ ∃ constrained max (and
min). Must be among the critical points, so just plug into objective
function and compare. The solution is:

(x ∗
1 , x

∗
2 ) ∈ {(1, 1), (−1, 1)} . details



Problem 7



Class #2

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

31/47

Problem 7 [Harder]

Solve the following problem when a ∈
󰀅
1
2
, 3
2

󰀆

max
x ,y ≥ 0

x 2 + y2 subject to ax + y = 1.
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Problem 7 [Harder]
Solution

Note that:

The objective function and the Lagrangian are convex
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Solution

Note that:

The objective function and the Lagrangian are convex =⇒ FOC
will identify a minimum.
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Problem 7 [Harder]
Solution

Note that:

The objective function and the Lagrangian are convex =⇒ FOC
will identify a minimum.

The k-level curves of the objective function are quarter-circles of
radius

√
k centered at the origin in R2

+:

x 2 + y2 = k .
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Solution

0 x

y
Level curves
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0 1/a

1

x

y
Level curves
Constraint
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0 1/a

1

x

y
Level curves
Constraint
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Problem 7 [Harder]
Solution

The solution is given by the corner (potentially both) that yields
the higher value of the objective function:

f (0, 1) = 1 ⋛ 1

a2
= f (

1

a
, 1)

⇐⇒ a2 ⋚ 1.
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Problem 7 [Harder]
Solution

The solution is given by the corner (potentially both) that yields
the higher value of the objective function:

f (0, 1) = 1 ⋛ 1

a2
= f (

1

a
, 1)

⇐⇒ a2 ⋚ 1.

Thus, for a ∈
󰀅
1
2
, 3
2

󰀆
, the solution to the constrained optimization

problem is

(x ∗, y∗) =

󰀻
󰀿

󰀽

󰀃
1
a
, 0
󰀄

for a ∈
󰀅
1
2
, 1
󰀆

(0, 1) for a ∈
󰀅
1, 2

3

󰀆 .
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Problem 8 [Harder]

Let X be a convex subset of Rn , f : X → R a concave function,
g : X → Rm a convex function, and a a vector in Rm . Consider the
following problem

max
x∈X

f (x ) subject to g(x ) ≤ a.

What is the Lagrangian for this problem? Prove that the Lagrangian is
a concave function of the choice variable x on X .
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Problem 8 [Harder]
Solution

The Lagrangian is

L (x , µ | a) = f (x )− µ (g(x )− a) ,

where µ ∈ Rm is a row vector of Lagrange multipliers.



Class #2

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

39/47

Problem 8 [Harder]
Solution

Proof.
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Solution

Proof.

Take any x , x ′ ∈ X .
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Solution

Proof.

Take any x , x ′ ∈ X . Then, ∀ t ∈ [0, 1],



Class #2

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

39/47

Problem 8 [Harder]
Solution

Proof.

Take any x , x ′ ∈ X . Then, ∀ t ∈ [0, 1],

f (·) concave =⇒ f
󰀃
tx + (1− t) x ′󰀄 ≥ tf (x ) + (1− t) f (x ′)
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Problem 8 [Harder]
Solution

Proof.

Take any x , x ′ ∈ X . Then, ∀ t ∈ [0, 1],

f (·) concave =⇒ f
󰀃
tx + (1− t) x ′󰀄 ≥ tf (x ) + (1− t) f (x ′)

g(·) convex =⇒ −µg
󰀃
tx + (1− t) x ′󰀄 ≥ −µ

󰀃
tg(x ) + (1− t) g(x ′)

󰀄
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Problem 8 [Harder]
Solution

Proof.

Take any x , x ′ ∈ X . Then, ∀ t ∈ [0, 1],

f (·) concave =⇒ f
󰀃
tx + (1− t) x ′󰀄 ≥ tf (x ) + (1− t) f (x ′)

g(·) convex =⇒ −µg
󰀃
tx + (1− t) x ′󰀄 ≥ −µ

󰀃
tg(x ) + (1− t) g(x ′)

󰀄

L
󰀃
tx + (1− t) x ′, µ | a

󰀄
≥ t

󰁫
f (x )− µ

󰀃
g(x )− a

󰀄󰁬
+ (1− t)

󰁫
f (x ′)− µ

󰀃
g(x ′)− a

󰀄󰁬
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Problem 8 [Harder]
Solution

Proof.

Take any x , x ′ ∈ X . Then, ∀ t ∈ [0, 1],

f (·) concave =⇒ f
󰀃
tx + (1− t) x ′󰀄 ≥ tf (x ) + (1− t) f (x ′)

g(·) convex =⇒ −µg
󰀃
tx + (1− t) x ′󰀄 ≥ −µ

󰀃
tg(x ) + (1− t) g(x ′)

󰀄

L
󰀃
tx + (1− t) x ′, µ | a

󰀄
≥ t

󰁫
f (x )− µ

󰀃
g(x )− a

󰀄󰁬
+ (1− t)

󰁫
f (x ′)− µ

󰀃
g(x ′)− a

󰀄󰁬

= tL
󰀃
x , µ | a

󰀄
+ (1− t)L

󰀃
x ′, µ | a

󰀄
.
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Problem 9

Consider the problem of maximizing xyz subject to
x + y + z ≤ 1, x ≥ 0, y ≥ 0, and z ≥ 0. Obviously, the three latter
constraints do not bind, and we can concentrate only on the first
constraint, x + y + z ≤ 1. Find the solution and the Lagrange
multiplier, and show how the optimal value would change if instead the
constraint was changed to x + y + z ≤ 9/10.
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Problem 9
Solution

Constraint set has nonempty interior =⇒ Slater condition
satisfied.
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Problem 9
Solution

Constraint set has nonempty interior =⇒ Slater condition
satisfied.

Lagrangian:

L(x , y , z , µ) = xyz − µ(x + y + z − 1).
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Problem 9
Solution

FOC:

y∗z ∗ − µ = 0[x ]

x ∗z ∗ − µ = 0[y ]

x ∗y∗ − µ = 0[z ]

x ∗ + y∗ + z ∗ − 1 = 0[µ]
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Problem 9
Solution

From [x ] and [y ]: z ∗ ∕= 0 =⇒ x ∗ = y∗. From [x ] and [z ]:
y∗ ∕= 0 =⇒ x ∗ = z ∗. Thus, x ∗ = y∗ = z ∗.
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Problem 9
Solution

From [x ] and [y ]: z ∗ ∕= 0 =⇒ x ∗ = y∗. From [x ] and [z ]:
y∗ ∕= 0 =⇒ x ∗ = z ∗. Thus, x ∗ = y∗ = z ∗.

Plugging into [µ]: x ∗ = y∗ = z ∗ = 1
3

=⇒ µ∗ = 1
9
.
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Problem 9
Solution

From [x ] and [y ]: z ∗ ∕= 0 =⇒ x ∗ = y∗. From [x ] and [z ]:
y∗ ∕= 0 =⇒ x ∗ = z ∗. Thus, x ∗ = y∗ = z ∗.

Plugging into [µ]: x ∗ = y∗ = z ∗ = 1
3

=⇒ µ∗ = 1
9
.

Optimal value: f (1
3
, 1
3
, 1
3
) = 1

27
.
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Problem 9
Solution

From [x ] and [y ]: z ∗ ∕= 0 =⇒ x ∗ = y∗. From [x ] and [z ]:
y∗ ∕= 0 =⇒ x ∗ = z ∗. Thus, x ∗ = y∗ = z ∗.

Plugging into [µ]: x ∗ = y∗ = z ∗ = 1
3

=⇒ µ∗ = 1
9
.

Optimal value: f (1
3
, 1
3
, 1
3
) = 1

27
.

If the constraint was changed to x + y + z ≤ 9
10

, the solution would
change to 3x ∗ = 9

10
=⇒ x ∗ = y∗ = z ∗ = 3

10
=⇒ µ∗ = 9

100
, and the

optimal value would fall to
󰀃

3
10

󰀄3
= 27

1000
.
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Problem 10 [Harder]

Consider a function f : Rn → R satisfying:

f (x ) =

󰀻
󰀿

󰀽

u(x ) if g(x ) ≤ 0

v(x ) if g(x ) ≥ 0

.

Further, suppose that: (i) u(x ) = v(x ) if g(x ) = 0; (ii) u and v are
differentiable, strictly concave, and posses maximizer in Rn ; and (iii)
g(x ) is differentiable and strictly convex. Carefully explain how you
would solve the problem of maximizing f by choosing x ∈ Rn .
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Solution

If ∃ x ∈ Rn : g(x ) < 0.
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Problem 10 [Harder]
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Call a solution to this problem x ∗
u .
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Finally

If g(x ) < 0∀ x ∈ Rn , a solution is x ∗
u .

If g(x ) > 0∀ x ∈ Rn , a solution is x ∗
v .

If ∃ x ∈ Rn : g(x ) < 0 and ∃ x ∈ Rn : g(x ) > 0,
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u is a solution if u(x ∗

u ) ≥ v(x ∗
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u ) ≤ v(x ∗
v ).
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−6x ∗ + 6y∗ = 0 ⇐⇒ x ∗ = y∗

4x ∗3 + 2x ∗ − 6x ∗ = 0 ⇐⇒ x ∗(x ∗ + 1)(x ∗ − 1) = 0 ⇐⇒ x ∗ = 0 or
x ∗ = −1 or x ∗ = 1.
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Let g(x ) = x 2(x 2 − 2) and note that dg(x)
dx

= 4x (x + 1)(x − 1), so

dg(x)
dx

< 0 ∀ x ∈ (−∞,−1) ∪ (0, 1),

dg(x)
dx

> 0 ∀ x ∈ (−1, 0) ∪ (1,+∞), and

dg(x)
dx

= 0 ∀ x ∈ {−1, 0, 1}.
return
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x ∗ = 0 =⇒ y∗(y∗ − 1) = 0 ⇐⇒ y∗ = 0 or y∗ = 1

=⇒ (x ∗, y∗) ∈ {(0, 0), (0, 1)} .

y∗ = 0 =⇒ x ∗(x ∗2 − 1) = 0 ⇐⇒ x ∗ = 0 or x ∗ = −1 or x ∗ = 1

=⇒ (x ∗, y∗) ∈ {(−1, 0), (1, 0)}
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x ∗ ∕= 0 and y∗ ∕= 0 =⇒

y∗ + 3x ∗2 − 1 = 0

2y∗ + x ∗2 − 1 = 0

=⇒ (x ∗, y∗) ∈
󰀝󰀕

− 1√
5
,
2

5

󰀖
,

󰀕
1√
5
,
2

5

󰀖󰀞
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From [x1]: 2x1(x2 − 2µ) = 0. So, either x1 = 0 or x2 = 2µ.

If x1 = 0:

From [µ]: x2 = ±
√
3.

From [x2]: x1 = 0 and x2 ∕= 0 =⇒ µ = 0.

So (0,
√
3, 0) and (0,−

√
3, 0) are critical points.
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If x1 ∕= 0:

From [x1]: µ = x2
2 .

Plugging into [x2]: x 2
1 = x 2

2 .

Plugging into [µ]: 3x 2
1 = 3 ⇐⇒ x1 = ±1.

So (1, 1, 1/2), (−1,−1,−1/2), (1,−1,−1/2), and (−1, 1, 1/2) are
critical points.

return
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Evaluating the objective function f (x1, x2) = x 2
1 x2 at the critical points:

f (0,
√
3) = f (0,−

√
3) = 0;

f (1, 1) = f (−1, 1) = 1;

f (1,−1) = f (−1,−1) = −1.

return
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Evaluating the objective function f (x1, x2) = x 2
1 x2 at the critical points:

f (0,
√
3) = f (0,−

√
3) = 0;

f (1, 1) = f (−1, 1) = 1;

f (1,−1) = f (−1,−1) = −1.

Thus (1, 1) and (−1, 1) are maximizers.
return


