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Problem 1

Class #2

SRR Find critical points, local maxima and local minima for each of the
following functions:

Problem 1
(@) z* 4 22 — 6ay + 3y?
(b) 2% — 62y + 2y + 10z +2y — 5

(c) zy* + 1y — xy

Which of the critical points are also global maxima or global minima?



Problem 1

Solution: Part (a)

Class #2

EC400: SOFP

Problem 1 [+ Find Critical pointS:

4273 + 22* — 6y* 0
Df(z",y") = =
—6z* + 6y~ 0

= (.77*, y*) S {(O? 0)7 (17 1)> <_17 _1)} .
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Solution: Part (a)

Class #2

EC400: SOFP @ Obtain the Hessian:

1222 +2 —6
D2f($, y) - '
—6 6
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Solution: Part (a)

Class #2

EC400: SOFP @ Obtain the Hessian:

Problem 1 12:1;2 + 2 _6
D2f($, y) = :
—6 6

@ The LPMs are:



Problem 1

Solution: Part (a)

Class #2

EC400: SOFP @ Obtain the Hessian:

Problem 1 12:1;2 + 2 _6
D*f(z,y) = :
—6 6

@ The LPMs are:

o det (Ly) = det (1227 + 2) = 1227 + 2.
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EC400:
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Problem 1

Solution: Part (a)

@ Obtain the Hessian:

1222 +2 —6
D*f(x,y) = :
—6 6

@ The LPMs are:
o det (Ly) = det (1227 + 2) = 1227 + 2.

o det (L) = det (D*f(z,y)) = 6(1222 + 2) — 36 = 722> — 24.
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Solution: Part (a)
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e @ Check definiteness of the Hessian at each critical point:

Problem 1



Problem 1

Solution: Part (a)

Class #2

e @ Check definiteness of the Hessian at each critical point:

Problem 1

e At (0,0): |Li|=2>0and |Ls] = —24 < 0 = indefinite —
saddle point.



Problem 1

Solution: Part (a)

Class #2

EC400: SOFP

@ Check definiteness of the Hessian at each critical point:

Problem 1

e At (0,0): |Li|=2>0and |Ls] = —24 < 0 = indefinite —
saddle point.

o At(1,1): |Li|=14>0and |Ly| =48 >0 — p.d. = strict
local min.



Problem 1

Solution: Part (a)

Class #2

EC400: SOFP

@ Check definiteness of the Hessian at each critical point:

Problem 1

e At (0,0): |Li|=2>0and |Ls] = —24 < 0 = indefinite —
saddle point.

o At(1,1): |Li|=14>0and |Ly| =48 >0 — p.d. = strict
local min.

o At (—1,-1): |L;| =14 >0and |Ly] =48 >0 = p.d. = strict
local min.



Problem 1

Solution: Part (a)

Class #2

@ Look for global max:

EC400: SOFP

Problem 1



Problem 1

Solution: Part (a)

Class #2

@ Look for global max:
e The function is unbounded above — no global max:

EC400: SOFP

Problem 1

flz,z) =2 -2z — oc.
T—r 00



Problem 1

Solution: Part (a)

Class #2

@ Look for global max:
e The function is unbounded above — no global max:

EC400: SOFP
Problem 1

flz,z) =2 -2z — oc.
T—r 00

@ Look for global min:
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Problem 1

Solution: Part (a)

@ Look for global max:
e The function is unbounded above — no global max:

flz,z) =2 -2z — oc.
T—r 00

@ Look for global min:
e (1,1) and (—1,—1) are global minima:
fla,y) =3(z —y)° +2°(a* - 2).

——— N——
>0 min at z2=1
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Solution: Part (b)

Class #2

EC400: SOFP

Problem 1 [+ Find Critical pOintS:
2z* — 6y* 4+ 10 0

Df(z*,y") = -
—62* + 4y* + 2 0

— e {(20),



Problem 1

Solution: Part (b)

Class #2

EC400: SOFP @ Obtain the Hessian:

Problem 1 2 _6
D?f(z,y) = .
f(z,y) (_ 6 4>



Problem 1

Solution: Part (b)

Class #2

EC400: SOFP @ Obtain the Hessian:
Problem 1 2 _6
D*f(z,y) = .
(z,y) (_6 4>

@ Not a local extremum since the Hessian is indefinite: The LPMs
are
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Problem 1

Solution: Part (b)

@ Obtain the Hessian:
pey= (-
T,Y) = .
Y -6 4

@ Not a local extremum since the Hessian is indefinite: The LPMs
are

o det (L) =det (2) =2 > 0V(z,y) € R%



Problem 1

Solution: Part (b)

Class #2

EC400: SOFP @ Obtain the Hessian:
Problem 1 2 _6
D*f(z,y) = .
(z,y) (_6 4>

@ Not a local extremum since the Hessian is indefinite: The LPMs
are

o det (L) =det (2) =2 > 0V(z,y) € R%

o det (Ly) = det (D*f(z,y)) =8 —36 =—-28 <0V(z,y) € R%



Problem 1

Solution: Part (b)

Class #2

EC400: SOFP
@ No global max since the function is unbounded from above:

Problem 1

lim f(z,0) = lim 2 + 10z — 5 = +oo.
T—r 00

Tr—00
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Problem 1

Solution: Part (b)

@ No global max since the function is unbounded from above:
lim f(z,0) = lim 2 + 10z — 5 = +oo.
T—r 00 T—r 00

@ No global min since the function is unbounded from below:

lim f(z,z) = lim —32% 4+ 122 — 5 = —o0.

T—r 00 T— 00



Problem 1

Solution: Part (c)

Class #2
EC400: SOFP

@ Find critical points:
y*Z + 3$*2y* _ y* 0
Df(z",y") = =

— () € {(0,0),(0, 1), (=1,0), (1,0), <—%§) , (%%)}

Problem 1
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D*f(z,y) =
2y + 322 — 1 21



Problem 1

Solution: Part (c)

Class #2

EC400: SOFP (*] Obtaln the HeSSIan

Problem 1

6y 2y + 322 — 1
D*f(z,y) =

2y + 322 — 1 21

@ The LPMs are:



Problem 1

Solution: Part (c)

Class #2

EC400: SOFP (*] Obtaln the HeSSIan

Problem 1

6y 2y + 322 — 1

D*f(z,y) =
2y + 322 — 1 21

@ The LPMs are:

o det (L) = det (6zy) = 6zy.



Problem 1

Solution: Part (c)

Class #2

EC400: SOFP (*] Obtaln the HeSSIan
Problem 1 6Iy 2y + 3{[2 o 1

D*f(z,y) =
2y + 322 — 1 21

@ The LPMs are:

o det (L) = det (6zy) = 6zy.

o det (Ly) = det (D*f(z,y)) = 1227y — (2y + 32® — 1)? =
—9z% + 622 — 4y? + 4y — 1.
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e @ Check definiteness of the Hessian at each critical point:

Problem 1
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Solution: Part (c)

Class #2

e @ Check definiteness of the Hessian at each critical point:

Problem 1

o At (0,0): |Li| =0and |Ly] = -1 < 0 = indefinite — saddle
point.



Problem 1

Solution: Part (c)

Class #2

e @ Check definiteness of the Hessian at each critical point:

Problem 1

o At (0,0): |Li| =0and |Ly] = -1 < 0 = indefinite — saddle
point.

e At (0,1): |L;|=0and |Ly] = -1 < 0 = indefinite — saddle
point.



Problem 1

Solution: Part (c)

Class #2

EC400: SOFP

@ Check definiteness of the Hessian at each critical point:

Problem 1

o At (0,0): |Li| =0and |Ly] = -1 < 0 = indefinite — saddle
point.

e At (0,1): |L;|=0and |Ly] = -1 < 0 = indefinite — saddle
point.

o At (1,0): |L;|=0and |Ly| = —4 < 0 = indefinite — saddle
point.
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Solution: Part (c)

Class #2

EC400: SOFP

Problem 1

o At (—1,0): |L1| =0and |Lz] = —1 < 0 = indefinite — saddle
point.
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Solution: Part (c)
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EC400: SOFP

Problem 1

o At (—1,0): |L1| =0and |Lz] = —1 < 0 = indefinite — saddle
point.

o At(L.2):|Lil = 12/5%2 > 0and [Lo] = 4/5 > 0 = pd. =

strict local min.



Problem 1

Solution: Part (c)

Class #2

EC400: SOFP

Problem 1

o At (—1,0): |L1| =0and |Lz] = —1 < 0 = indefinite — saddle
point.

o At(L.2):|Lil = 12/5%2 > 0and [Lo] = 4/5 > 0 = pd. =
strict local min.

o At (—% g): ILi| = —12/5%2 < 0 and |Lo| = 4/5 > 0 = n.d.
— strict local max.



Problem 1

Solution: Part (b)

Class #2

EC400: SOFP

@ No global max since the function is unbounded from above:

Problem 1

lim f(z,r) = lim 2° + 7* — 2% = 0.
T—00 T—00



Class #2

EC400:

Problem 1

SOT

P

Problem 1

Solution: Part (b)

@ No global max since the function is unbounded from above:
lim f(z,r) = lim 2° + 7* — 2% = 0.
T—00 T—00

@ No global min since the function is unbounded from below:

lim f(z,—z) = lim 2° — 2* + 2* = —00. [
T—00 T—r 00
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Problem 2

Class #2

B (et S C R* be anopensetand f: S — R be a twice-continuously
differentiable function. Suppose that Df(x*) = 0. State the weakest
Problem 2 sufficient conditions that the Hessian must satisfy at the critical point

x* for:

© x* to be alocal max;

@ x* to be a strict local min.



Problem 2

Solution

Class #2

SRS @ For alocal max:
Problem 2 3€>0D2f(X)SOV$€B(X* ’6)

where B(x* | e) = {y e R" : ||y — x|| < ¢}.



Problem 2

Solution

Class #2

EC400: SOFP o For a |Oca| max:
bl 2 Je>0:D*(x)<0Vz € B(xX"|¢)
where B(x* | e) = {y e R" : ||y — x|| < ¢}.
@ For a strict local min:
D*f(x*) >0and Je > 0: D*f(x) >0Vz € B(x* | ¢)

where B(x* | ¢) = B(x* | ¢) \ {x*}.
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Problem 3

Class #2

EC400: SOFP

Problem 3

Check whether f(z,y) = z* + 2%y* + y* — 3z — 8y is concave or
convex by using the Hessian.



Problem 3

Solution

Class #2

Sl Obtain the Hessian:

4o’ + 2zy® — 3
Problem 3 [+ _l)f(x7 y), —
222y + 4y — 8



Problem 3

Solution

Class #2
EC400: SOFP Obtain the HeSSian:
423 + 22y? — 3
Problem 3 [+ _l)f(x7 y), —
222y + 49> — 8

1222 + 2¢42 4y

@ D*f(z,y) =
4dxy 227 + 129>



Problem 3

Solution

e Check the principal minors:
EC400: SOFP
1222 4 292 4y
@ det = 24(z* + y*) + 1322%y* > 0,
Problem 3 4‘7"/!/ 21;2 + 12y2



Problem 3

Solution

e Check the principal minors:
EC400: SOFP
1222 4 292 4y
@ det = 24(z* + y*) + 1322%y* > 0,
Problem 3 4‘7"/!/ 21;2 + 12y2

@ det (122% + 2y?) = 122% + 2y> > 0, and



Problem 3

Solution

e Check the principal minors:

EC400: SOFP
1222 4 292 4y
@ det = 24(z* + y*) + 1322%y* > 0,
Problem 3 4‘7"/!/ 21;2 + 12y2

@ det (122% + 2y?) = 122% + 2y> > 0, and

® det (222 +12¢%) = 222 4 12y > 0.



Problem 3

Solution

e Check the principal minors:

EC400: SOFP
1222 4 292 4y
@ det = 24(z* + y*) + 1322%y* > 0,
Problem 3 4‘7"/!/ 21;2 + 12y2

@ det (122% + 2y?) = 122% + 2y> > 0, and
® det (227 + 12y?) = 22 + 12y > 0.

@ All principal minors > 0 = Hessian is p.s.d. = f(+) is convex
on R2.
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Problem 4 [Harder]

Class #2

EC400: SOFP

Solve the following problem

Problem 4 9 9
max [min {z, y} — 2> — y*] .
x7y



Problem 4 [Harder]

Solution

Class #2

@ Can’'t use FOC since differentiability fails. What can we do?

Problem 4



Problem 4 [Harder]

Solution

Class #2

@ Can’'t use FOC since differentiability fails. What can we do?

Problem 4

@ It turns out we can easily show that z* = y* at any solution.



Problem 4 [Harder]

Solution

Class #2

@ Can’'t use FOC since differentiability fails. What can we do?

Problem 4

@ It turns out we can easily show that z* = y* at any solution.

@ Let f(z,y) = min {z,y} — 2% — y* and WLOG suppose that
T >y,



Problem 4 [Harder]

Solution

Class #2

EC400: SOFP

o Let z* = L and note that

Problem 4



Problem 4 [Harder]

Solution

Class #2

EC400: SO

o Let z* = L and note that

o Y+yt<at+yr<azt+z*

Problem 4



Problem 4 [Harder]

Solution

Class #2

EC400: SO

o Let z* = L and note that

o Yyt <at4+yt<at4zt = y"<z2zF <zt

Problem 4



Problem 4 [Harder]

Solution

Class #2

EC400: SOFP

o Let z* = L and note that

o Y+ yt<zt+yt<zt+t = y'r<zF<zh
Problem 4

e By concavity of —z? and Jensen’s inequality,

1 *2 1 *2 $*+y* 2
T T s ( 2




Problem 4 [Harder]

Solution

Class #2

EC400: SOFP

o Let z* = L and note that

o Y+ yt<zt+yt<zt+t = y'r<zF<zh
Problem 4

e By concavity of —z? and Jensen’s inequality,

1 *2 1 *2 $*+y* 2
T T s ( 2

—1‘*2 o y*2 < —22*2




Problem 4 [Harder]

Solution

Class #2

EC400: SOFP ° Therefore, ) )
fla* y") = min{2%, y"} — 2™ — ¢

Problem 4



Class #2

EC400: S(

Problem 4

Problem 4 [Harder]

Solution

@ Therefore,
f(l'*, y*) — min {l'*, y*} _ .CI?*2 _ y*2



Class #2

EC400: S(

Problem 4

Problem 4 [Harder]

Solution

@ Therefore,

f(l'*, y*) — min {l'*, y*} _ .CI?*2 _ y*2
— y* . .’L'*2 . y*2
2 *2



Problem 4 [Harder]

Solution

Class #2

EC400: SOFP @ Therefore,

f(l'*, y*) — min {l'*, y*} _ .CI?*2 _ y*2

Problem 4

<z'—z"—y

< 2F— 272



Problem 4 [Harder]

Solution

Class #2

EC400: SOFP o Therefore,
f(l'*, y*) — min {l'*, y*} _ .CI?*2 _ y*2

% *2 *2

<z — oy

Problem 4

< 2F— 272

— min{z*, Z*} . 2*2 o 2*2



Problem 4 [Harder]

Solution

Class #2
EC400: SOFP ° Therefore,
f(l'*, y*) — min {l'*, y*} _ .CI?*2 _ y*2
— y* . .’L'*2 . y*2
Problem 4 < Z* _ 1,*2 _ y*2

< 2F— 272

— min{z*, Z*} . 2*2 o 2*2

=f(2",2%),



Problem 4 [Harder]

Solution

Class #2
EC400: SOFP ° Therefore,
f(l'*, y*) — min {l'*, y*} _ .CI?*2 _ y*2
— y* . .’L'*2 . y*2
Problem 4 < Z* _ 1,*2 _ y*2

< 2F— 272

— min{z*, Z*} . 2*2 o 2*2

=f(2",2%),

which is a contradiction since f(z*, y*) > f(z,y) V(z,y) € R2



Problem 4 [Harder]

Solution

Class #2
EC400: SOFP

@ Finally, since we know z* = y*, the problem simplifies to

max z — 2z°.
T
Problem 4



Problem 4 [Harder]

Solution

Class #2
EC400: SOFP

@ Finally, since we know z* = y*, the problem simplifies to

max z — 2z°.

Problem 4
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Problem 4 [Harder]

Solution

Class #2
EC400: SOFP

@ Finally, since we know z* = y*, the problem simplifies to

max z — 2z°.

Problem 4
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e SOC: % = —4 < 0, so the objective function is concave and
we have found the solution.
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Problem 5

Class #2

EC400: SOFP

Find the optimal solution for the following program

max z subjectto z® + y? = 0.
z,y

Problem 5

Is the Lagrange approach appropriate?



Problem 5

Solution

Class #2

The constraint qualification fails:

EC400: SOFP

@ (z,y) = (0,0), a critical point of the constraint, belongs to the
constraint set, so the procedure is not well defined and we cannot
use the Lagrange Theorem.

Problem 5



Problem 5

Solution

Class #2

The constraint qualification fails:

EC400: SOFP

@ (z,y) = (0,0), a critical point of the constraint, belongs to the
constraint set, so the procedure is not well defined and we cannot
use the Lagrange Theorem.

el @ To see this, note that (0,0) solves

322 0
o (-

while it satisfies 7(0,0) = 0, where h(z,y) = 23 + y? is the
constraint function.



Problem 5

Solution

Class #2

EC400: SOFP

While the Lagrange method is not appropriate, it is easy to see that
(z*,y*) = (0,0) is a solution.

oot 5 Notice that the solution (z*, y*) = (0, 0) is not a critical point of the
Lagrangian. There is no solution to the FOC

1-3\22=0;2\y=0,2°+4>=0



Problem 6



Problem 6

Class #2

EC400: SOFP

Solve the following problem

max ri7, subjectto 2z + z7 = 3.
Z1,22
Problem 6
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Class #2

@ Check the constraint qualification:

EC400: SOFP

Problem 6



Problem 6

Solution

Class #2

@ Check the constraint qualification:

EC400: SOFP

It is satisfied. The only critical point of the constraint is
(21, 22) = (0,0), the only solution to

41‘1 0
Dh(z1, 1) = = ,
Problem 6 2.1;2 O

and it is not in the constraint set as it does not satisfy

h(zy, 1) = 20f + 23 — 3 = 0.



Problem 6

Solution

Class #2 [+ Form the Lagrangian:
EC400: SOFP

L(zy, 32, 1) = am — p(221 + 25 — 3)

Problem 6



Problem 6

Solution

Class #2 [+ Form the Lagrangian:
EC400: SOFP

L(zy, 32, 1) = am — p(221 + 25 — 3)

@ Take the FOC:

OL(x1, 22,
Problem 6 1
OL(xy, 12,
[2:] Gt =t om0
OL(2, 22, 1)

(] =i = 3=0

o



Problem 6

Solution

Class #2

EC400: SOFP

@ Solve to find the critical points:

(0,4/3,0), (0,—/3,0), (1,1,1/2), (—1,—1,-1/2), (1, -1, —-1/2),
and (—1,1,1/2).

Problem 6



Problem 6

Solution

Class #2

EC400: SOFP

@ Solve to find the critical points:

(0,4/3,0), (0,—/3,0), (1,1,1/2), (—1,—1,-1/2), (1, -1, —-1/2),
and (—1,1,1/2).

orablem 6 @ Finally, compact constraint set — d constrained max (and
min). Must be among the critical points, so just plug into objective
function and compare. The solution is:

(xl*7$2*) € {(17 1)7 (_17 1)} :
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Problem 7 [Harder]

Class #2

EC400: SOFP

Solve the following problem when a € [1, 3]

max z? + y? subjectto azr +y = 1.

x7y20

Problem 7



Problem 7 [Harder]

Solution

Class #2

EC400: SOFP Note that:

@ The objective function and the Lagrangian are convex

Problem 7



Problem 7 [Harder]

Solution

Class #2

EC400: SOFP Note that:

@ The objective function and the Lagrangian are convex — FOC
will identify a minimum.

Problem 7
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EC400:
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SOT
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Problem 7 [Harder]

Solution

Note that:
@ The objective function and the Lagrangian are convex — FOC
will identify a minimum.
@ The k-level curves of the objective function are quarter-circles of

radius vk centered at the origin in R :

2’ +y? = k.



Problem 7 [Harder]

Solution

Class #2 y A

EC400: SOFP

— Level curves

Problem 7

A 4
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Problem 7
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Class #2 y A

EC400: SOFP

—— Level curves
—— Constraint

Problem 7

A 4

a)
p—
~
<
8



Problem 7 [Harder]

Solution

= @ The solution is given by the corner (potentially both) that yields
SO0 (1312 the higher value of the objective function:

Problem 7
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EC400:

Problem 7

SOT

P

Problem 7 [Harder]

Solution

@ The solution is given by the corner (potentially both) that yields
the higher value of the objective function:

FO)=1Z =5
<~ a2§1

@ Thus, for a € [1,2], the solution to the constrained optimization

problem is
(1,0) forac [5,1]
(=% y") =

.U
(0,1) forae[1,2]
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Problem 8 [Harder]

Class #2

EC400: SOFP

Let X be a convex subset of R™, f : X — R a concave function,
g : X — R™ a convex function, and « a vector in R™. Consider the
following problem

ng%cf(x) subjectto ¢(z) < a.

Problem 8 What is the Lagrangian for this problem? Prove that the Lagrangian is
a concave function of the choice variable z on X.



Problem 8 [Harder]

Solution

Class #2
EC400: SOFP
The Lagrangian is

Lz, pla)=f(z)=plglr)—a),

where ;1 € R™ is a row vector of Lagrange multipliers.

Problem 8
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Solution

Class #2
o Proof.
EC400: SOFP

Problem 8
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Solution

Class #2
o Proof.
EC400: SOFP

@ Take any z,z’' € X.
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EC400: SOFP

@ Take any z,z' € X. Then, V¢ € [0, 1],

Problem 8
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Class #2
o Proof.
EC400: SOFP

@ Take any z,z' € X. Then, V¢ € [0, 1],

f()concave = f(tz+ (1—t)a’) > tf(z) + (1 — ¢t) f(')

Problem 8



Problem 8 [Harder]

Solution

Class #2
o Proof.
EC400: SOFP

@ Take any z,z' € X. Then, V¢ € [0, 1],

f()concave = f(tz+ (1—t)a’) > tf(z) + (1 — ¢t) f(')

g(-) convex = —pug(tz + (1 —t)a") > —u(tg(z) + (1 —¢) g(z"))

Problem 8



Problem 8 [Harder]

Solution

Class #2
o Proof.
EC400: SOFP

@ Take any z,z' € X. Then, V¢ € [0, 1],

f()concave = f(tz+ (1—t)a’) > tf(z) + (1 — ¢t) f(')
g(-) convex = —pug(tz + (1 —t)a") > —u(tg(z) + (1 —¢) g(z"))

Ltz + (1= 8o/, 1| a) 2 t|f(2) - p(g(2) = &) | + (1= 0) [£(&) = u(g(a") - a)]

Problem 8



Problem 8 [Harder]

Solution

Class #2
o Proof.
EC400: SOFP

@ Take any z,z' € X. Then, V¢ € [0, 1],

f()concave = f(tz+ (1—t)a’) > tf(z) + (1 — ¢t) f(')
g(-) convex = —pug(tz + (1 —t)a") > —u(tg(z) + (1 —¢) g(z"))
Lt + (1 =0 p|a) 2 tf(@) = u(g(x) = )| + (1= ) [J&) = u(g(a) ~ a)]

=tL(z,pnla)+(1—1t)L(z' 1] a).
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EC400: SOFP

Consider the problem of maximizing zyz subject to
r+y+2<1,2>0,y>0, and z > 0. Obviously, the three latter
constraints do not bind, and we can concentrate only on the first
constraint, z + y + z < 1. Find the solution and the Lagrange
multiplier, and show how the optimal value would change if instead the
constraint was changed to =z + y + 2z < 9/10.
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@ Constraint set has nonempty interior = Slater condition
satisfied.
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Solution
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EC400: SOFP

@ Constraint set has nonempty interior = Slater condition
satisfied.

@ Lagrangian:

L(z,y, z,p) =ayz — p(z +y+2—1).
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EC400: SOFP [+ FOC:
[v] R
4] gy —p=0
Problem 9

(1] Tty +2 —1=0
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EC400: SOFP @ From [z] and [y]: z* # 0 = z* = y*. From [z] and [2]:
y*#0 = 2" =2". Thus, 2" = y* = 2"
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Solution

Class #2
EC400: SOFP @ From [z] and [y]: z* # 0 = z* = y*. From [z] and [2]:
y*#£0 = x* = 2*. Thus, z* = y* = z*.

@ Plugginginto [u]: z* = y* = 2" =1 = p* = 3.
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Solution
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EC400: SOFP

@ From [z]and [y]: z2* #0 = z* = y*. From [z] and [z]:
y*#0 = z* = z*. Thus, z* = y* = 2*.

@ Plugginginto [u]: z* = y* =2" =3 = p* =
@ Optimal value: f (3,3, 3) = -
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Problem 9

Solution

HC' fQ" . @ From [z] and [y]: z* # 0 = z* = y*. From [z] and [2]:
y*#0 = z* = z*. Thus, z* = y* = 2*.
@ Plugging into [u]: z* = y* = 2* = % = W= %.
@ Optimal value: f (3,3, 3) = -
Problem 9 @ If the constraint was changed to z + y + z < %, the solution would

changeto3z* =& — 2" =y*=2"=3 = u* =35, and the

optimal value would fall to (1—5’5)3 = . O
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Problem 10 [Harder]

Class #2

S Consider a function f : R® — R satisfying:
u(z) ifg(xz) <0
{v<x> fg(z) >0
Further, suppose that: (i) u(z) = v(z) if g(z) = 0; (ii) v and v are
differentiable, strictly concave, and posses maximizer in R™; and (iii)

g(z) is differentiable and strictly convex. Carefully explain how you
Problem 10 would solve the problem of maximizing f by choosing = € R".
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max u(z) subjectto g(z) <O0.
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max u(z) subjectto g(z) <O0.

o Problem satisfies KKT conditions and admits solution since u(-)
possesses maximizer in R™.
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@ If 3z eR": g(z) <O.
e Solve

EC400: SOFP

max u(z) subjectto g(z) <O0.

o Problem satisfies KKT conditions and admits solution since u(-)
possesses maximizer in R™.

o Maximizers are the solutions to

Du(z) — ADg(z) = 0,\g(z) =0,A >0, g(z) <0.
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Solution

Class #2

@ If 3z eR": g(z) <O.
e Solve

EC400: SOFP

max u(z) subjectto g(z) <O0.

o Problem satisfies KKT conditions and admits solution since u(-)
possesses maximizer in R™.

o Maximizers are the solutions to

Du(z) — ADg(z) = 0,\g(z) =0,A >0, g(z) <0.

Problem 10

o Call a solution to this problem z;.
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Solution

Class #2

@ If 3z e R": g(z) > 0.
e Solve

EC400: SOFP

max v(z) subjectto — g(z) <0.
zER™

Problem 10
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Problem 10 [Harder]

Solution

@ If 3z e R": g(z) > 0.

e Solve

max v(z) subjectto — g(z) <0.
zER™

e Problem admits solution as v(-) possesses maximizer in R". But
since —g(z) is strictly convex, does not satisfy conditions for KKT
theorem. KKT FOC remain necessary conditions for max.



Problem 10 [Harder]

Solution

e @ If3z e R™: g(z) > 0.

EC400: SOFP
e Solve
max v(z) subjectto — g(z) <0.
r€ER”™

e Problem admits solution as v(-) possesses maximizer in R". But
since —g(z) is strictly convex, does not satisfy conditions for KKT
theorem. KKT FOC remain necessary conditions for max.

e Maximizers must be among the solutions to

Dv(z) 4+ ADg(z) = 0, Ag(z) =0,\ >0, g(z) > 0.
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Problem 10 [Harder]

Solution

e @ If3z e R™: g(z) > 0.
EC400: SOFP
e Solve

max v(z) subjectto — g(z) <0.
zER™

e Problem admits solution as v(-) possesses maximizer in R". But
since —g(z) is strictly convex, does not satisfy conditions for KKT
theorem. KKT FOC remain necessary conditions for max.

e Maximizers must be among the solutions to

Dv(z) 4+ ADg(z) = 0, Ag(z) =0,\ >0, g(z) > 0.

Problem 10

o Call a solution to this problem z;.
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@ If g(z) < OVz € R”, a solution is .
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EC400: SOFP

@ If g(z) < OVz € R”, a solution is .

@ If g(z) > 0V z € R", a solution is z.

v
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Solution

Class #2

Finally

@ If g(z) < OVz € R”, a solution is .
@ If g(z) > 0V z € R", a solution is z.

v

@ IfdzeR":g(z)<0and Iz € R": g(z) > 0,

Problem 10



Class #2

EC400:

Problem 10

Jo)!

P

Problem 10 [Harder]

Solution

Finally

@ If g(z) < OVz € R”, a solution is .

@ If g(z) > 0V z € R", a solution is z.

v

@ IfdzeR":g(z)<0and Iz € R": g(z) > 0,

e 1 is a solution if u(z}) > v(z}); and



Problem 10 [Harder]

Solution

Class #2

Finally

EC400: SOFP

@ If g(z) < OVz € R”, a solution is .

@ If g(z) > 0V z € R", a solution is z.

v

@ IfdzeR":g(z)<0and Iz € R": g(z) > 0,

e 1 is a solution if u(z}) > v(z}); and

Problem 10

o zis a solution if u(z?) < v(z}). O
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Problem 1: Details

Class #2

EC400: SOFP

Appendix

@ 62" +6y"=0 << z*¥=y"

@ 47" + 22" — 62" =0 < 2*(z*+1)(z*—1)=0 > z*=0o0r
¥ =-—lorz*=1.
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Problem 1: Details

Class #2

B et g(v) = 2%(2? — 2) and note that 242 = 4z(z + 1)(z — 1), s0

Appendix

o ¥ vz e (—o0,—1)U(0,1),

o ¥) ~ vy e (~1,0)U (1, +00), and

0 @ _gyye {=1,0,1}.



Problem 1: Details

Class #2 Rewrite the system as

EC400: SOFP
v 480 = 1) =0

Appendix

*(2y" + 2" = 1) =0



Problem 1: Details

Class #2 Rewrite the system as

EC400: SOFP
v 480 = 1) =0

Appendix

*(2y" + 2" = 1) =0

0 1"=0= y(y—1)=0 <= y"=00ry =1
— (z%,9") €{(0,0),(0,1)}.



Problem 1: Details

Class #2 Rewrite the system as

EC400: SOFP
Y (y* + 3272 —1) =0

Appendix

22y + 2 —1)=0

@ 1'=0 = y (v —1)=0 <= y*=0o0ry* =1
= (z",y") € {(0,0),(0,1)}.

@ =0 = 2*(2"*~1)=0 < 2*=00rz*=—-lorz* =1
= (x*,y*) < {(_170)7 (170)}
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EC400: SOFP

Appendix Q z* 7é 0 and y* # O e
Y 4322 —1=0

29" + 22 —1=0

— (2",y7) € {(‘% g) ’ (% é)}
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EC400: SOFP

@ From [z]: 2z (2 — 2u) = 0. So, either z; = 0 or z, = 2p.

Appendix

(*] |f$1:O:

e From [u]: z» = +/3.
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Class #2

EC400: SOFP

@ From [z]: 2z (2 — 2u) = 0. So, either z; = 0 or z, = 2p.

Appendix
o If Iy = 0:
e From [u]: z» = +/3.

e From[x]: 1 =0and z #0 — u=0.



Problem 6: Details

Class #2

EC400: SOFP

@ From [z]: 2z (2 — 2u) = 0. So, either z; = 0 or z, = 2p.

Appendix

o If Iy = 0:
e From [u]: z» = +/3.

e From[x]: 1 =0and z #0 — u=0.

So (0,+/3,0) and (0, —/3,0) are critical points.
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Appendix
e From [z1]: = %.

e Plugging into [zp]: 7 = 3.
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Appendix
e From [z1]: = %.

e Plugging into [zp]: 7 = 3.

e Plugging into [u]: 322 =3 <= x; = +1.
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Class #2

EC400: SOFP Y If xl # O.

Appendix

e From [z1]: = %.
e Plugging into [zp]: 7 = 3.

e Plugging into [u]: 322 =3 <= x; = +1.

So (1,1,1/2), (-1,-1,-1/2), (1,—1,-1/2), and (—1,1,1/2) are
critical points.
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© £(0.V3) = f(0.~V3) =0
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Problem 6: Details

Class #2

SO Evaluating the objective function f(z1, %) = z{1, at the critical points:

° f(0.v3) = 1(0,~V3) = 0;
o f(1,1)=f(-1,1) =1,

o f(1,—-1)=f(-1,-1) = —1.



Problem 6: Details

Class #2

SO Evaluating the objective function f(z1, %) = z{1, at the critical points:

° f(0.v3) = 1(0,~V3) = 0;
o f(1,1)=f(-1,1) =1,

o f(1,—-1)=f(-1,-1) = —1.

Thus (1,1) and (—1, 1) are maximizers.



