EC400: SOFP

Class #2

Pinjas Albagli p.m.albagli@lse.ac.uk

September 2024

Class #2

EC400: SOFF

Problem 1

Problem 2

Problem

Problem 4

Problem F

D. H.

Problem 7

Problem 8

Problem

- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
 - Problem 5

- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10

Problem 1

Class #2

EC400: SOF

Problem 1

S. . . I. I

. robiciii

Problem 5

Problem

Duahlam

Problem 9

Problem 1

Find critical points, local maxima and local minima for each of the following functions:

(a)
$$x^4 + x^2 - 6xy + 3y^2$$

(b)
$$x^2 - 6xy + 2y^2 + 10x + 2y - 5$$

(c)
$$xy^2 + x^3y - xy$$

Which of the critical points are also global maxima or global minima?

Class #2

EC400: SOFI

Problem 1

Problem

Problem

Problem

Duebless

Problem

Problem

Problem 9

Problem 10

Find critical points:

$$Df(x^*, y^*)' = \begin{pmatrix} 4x^{*3} + 2x^* - 6y^* \\ -6x^* + 6y^* \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\implies (x^*, y^*) \in \{(0,0), (1,1), (-1,-1)\}.$$

▶ details

Class #2

EC400: SOF

Problem 1

Problem

D. . . I

Problem

Problem

Problem

Problem !

Problem 10

$$D^{2}f(x,y) = \begin{pmatrix} 12x^{2} + 2 & -6 \\ -6 & 6 \end{pmatrix}.$$

Class #2

EC400: SOF

Problem 1

Problem

1 TODICIII

Problem

Duelden

Problem 9

Problem 10

Obtain the Hessian:

$$D^{2}f(x,y) = \begin{pmatrix} 12x^{2} + 2 & -6 \\ -6 & 6 \end{pmatrix}.$$

• The LPMs are:

Class #2

EC400: SOF

Problem 1

Problem

Problem

Flobleiii

Problem

Droblem

Problem

Problem 9

Problem 10

$$D^{2}f(x,y) = \begin{pmatrix} 12x^{2} + 2 & -6 \\ -6 & 6 \end{pmatrix}.$$

- The LPMs are:
 - $\det(L_1) = \det(12x^2 + 2) = 12x^2 + 2.$

Class #2

EC400: SOF

roblem

Problem 3

Problem

Problem

Problem

Problem 8

Problem

Problem 10

$$D^{2}f(x,y) = \begin{pmatrix} 12x^{2} + 2 & -6 \\ -6 & 6 \end{pmatrix}.$$

- The LPMs are:
 - $\det(L_1) = \det(12x^2 + 2) = 12x^2 + 2$.
 - $\det(L_2) = \det(D^2 f(x, y)) = 6(12x^2 + 2) 36 = 72x^2 24.$

Class #2

EC400: SOFI

Problem 1

oblem

Problem

. . . .

Problem (

Problem

Problem

Problem 9

Problem 10

• Check definiteness of the Hessian at each critical point:

Class #2

EC400: SOF

Problem 1

Problem

Problem

Fiobleiii

Problem

Problem

Problem

Problem

Problem !

- Check definiteness of the Hessian at each critical point:
 - At (0,0): $|L_1|=2>0$ and $|L_2|=-24<0 \implies$ indefinite \implies saddle point.

Class #2

EC400: SOF

Problem 1

Problem

Problem

Problem

Problem

_ ...

Problem 9

Problem 10

• Check definiteness of the Hessian at each critical point:

- At (0,0): $|L_1|=2>0$ and $|L_2|=-24<0 \implies$ indefinite \implies saddle point.
- At (1,1): $|L_1|=14>0$ and $|L_2|=48>0 \implies \text{p.d.} \implies \text{strict local min.}$

Class #2

EC400: SOF

Problem 1

Problem

Problem

Problem

Problem

Problem 9

Problem

• Check definiteness of the Hessian at each critical point:

- At (0,0): $|L_1|=2>0$ and $|L_2|=-24<0 \implies$ indefinite \implies saddle point.
- At (1,1): $|L_1|=14>0$ and $|L_2|=48>0 \implies \text{p.d.} \implies \text{strict local min.}$
- At (-1,-1): $|L_1|=14>0$ and $|L_2|=48>0 \implies \text{p.d.} \implies \text{strict}$ local min.

Class #2

EC400: SOFE

Problem 1

......

Problem

Problem

D ... I. I.

Problem 6

Problem 8

Problem 9

Problem 10

Look for global max:

Class #2

EC400: SOFI

Problem 1

Problem

Problem

D. . . Ll. . . .

Problem

Problem

Problem

1 TODICIII

Problem 9

- Look for global max:
 - The function is unbounded above ⇒ no global max:

$$f(x,x) = x^4 - 2x \underset{x \to \infty}{\longrightarrow} \infty.$$

Class #2

EC400: SOFF

Problem 1

'roblem

Problem

1 TODICIII

Problem

Problem

Problem

Problem 10

- Look for global max:
 - The function is unbounded above ⇒ no global max:

$$f(x,x) = x^4 - 2x \underset{x \to \infty}{\longrightarrow} \infty.$$

Look for global min:

Class #2

EC400: SOF

Problem 1

roblem

Problem

Duebless

Droblom

1 TODIETI

Problem

Problem

Problem !

- Look for global max:
 - The function is unbounded above ⇒ no global max:

$$f(x,x) = x^4 - 2x \xrightarrow[x \to \infty]{} \infty.$$

- Look for global min:
 - (1,1) and (-1,-1) are global minima:

$$f(x,y) = \underbrace{3(x-y)^2}_{\geq 0} + \underbrace{x^2(x^2-2)}_{\min \text{ at } x^2=1}.$$

Class #2

EC400: SOFI

Problem 1

Problem

Droblom

Problem

Problem

_ ...

Problem

Problem 9

Problem 10

Find critical points:

$$Df(x^*, y^*)' = \begin{pmatrix} 2x^* - 6y^* + 10 \\ -6x^* + 4y^* + 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\implies (x^*, y^*) \in \left\{ \left(\frac{13}{7}, \frac{16}{7}\right) \right\}.$$

Class #2

EC400: SOF

Problem 1

Problem

Problem

Problem

Problem

Droblem

Troblem

Problem

Problem 9

Problem 10

$$D^2 f(x,y) = \begin{pmatrix} 2 & -6 \\ -6 & 4 \end{pmatrix}.$$

Class #2

EC400: SOFP

Problem 1

Problem

Problem

Problem

Droblem

_ ...

Problem

Duahlam

Problem 9

Problem 10

Obtain the Hessian:

$$D^2 f(x,y) = \begin{pmatrix} 2 & -6 \\ -6 & 4 \end{pmatrix}.$$

 Not a local extremum since the Hessian is indefinite: The LPMs are

Class #2

EC400: SOFP

Problem 1

Problem

Problem

D. . I. I. . . .

Problem

Duahlam

Problem 9

Problem 10

$$D^2 f(x,y) = \begin{pmatrix} 2 & -6 \\ -6 & 4 \end{pmatrix}.$$

- Not a local extremum since the Hessian is indefinite: The LPMs are
 - $\det(L_1) = \det(2) = 2 > 0 \ \forall (x, y) \in \mathbb{R}^2$.

Class #2

EC400: SOF

roblem

Problem

Problem

Problem

_ ...

Problem

Problem 1

$$D^2 f(x,y) = \begin{pmatrix} 2 & -6 \\ -6 & 4 \end{pmatrix}.$$

- Not a local extremum since the Hessian is indefinite: The LPMs are
 - $\det(L_1) = \det(2) = 2 > 0 \ \forall (x, y) \in \mathbb{R}^2$.
 - $\det(L_2) = \det(D^2 f(x, y)) = 8 36 = -28 < 0 \ \forall (x, y) \in \mathbb{R}^2$.

Class #2

EC400: SOFF

Problem 1

Problem

Problem

Problem

_ ...

Problem 9

Problem 10

• No global max since the function is unbounded from above:

$$\lim_{x \to \infty} f(x, 0) = \lim_{x \to \infty} x^2 + 10x - 5 = +\infty.$$

Class #2

EC400: SOFI

Problem 1

Problem

Problem

Problem

Droblom

Problem

B

Problem 9

Problem 1

• No global max since the function is unbounded from above:

$$\lim_{x \to \infty} f(x, 0) = \lim_{x \to \infty} x^2 + 10x - 5 = +\infty.$$

No global min since the function is unbounded from below:

$$\lim_{x \to \infty} f(x, x) = \lim_{x \to \infty} -3x^2 + 12x - 5 = -\infty.$$

Class #2

EC400: SOFI

Problem 1

Problem

Droblom

1 TODICII

Problem

Problem

Problem

Problem 9

Find critical points:

$$Df(x^*, y^*)' = \begin{pmatrix} y^{*2} + 3x^{*2}y^* - y^* \\ 2x^*y^* + 6x^{*3} - x^* \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\implies (x^*, y^*) \in \left\{ (0, 0), (0, 1), (-1, 0), (1, 0), \left(-\frac{1}{\sqrt{5}}, \frac{2}{5} \right), \left(\frac{1}{\sqrt{5}}, \frac{2}{5} \right) \right\}.$$

▶ details

Class #2

Problem 1

Problem

Problem

Flobleiii

Problem

Problen

Problem

Problem !

Problem 10

$$D^{2}f(x,y) = \begin{pmatrix} 6xy & 2y + 3x^{2} - 1 \\ 2y + 3x^{2} - 1 & 2x \end{pmatrix}.$$

Class #2

Problem 1

Problem

Problem

Problem

Duelden

1 TODIETTI

Problem

Problem

Problem 10

Obtain the Hessian:

$$D^{2}f(x,y) = \begin{pmatrix} 6xy & 2y + 3x^{2} - 1 \\ 2y + 3x^{2} - 1 & 2x \end{pmatrix}.$$

The LPMs are:

Class #2

EC400: SOF

Problem 1

Problem

Problem

Problem

Problem

Problem

1 TODICIII

Problem

Problem 9

Problem 10

$$D^{2}f(x,y) = \begin{pmatrix} 6xy & 2y + 3x^{2} - 1 \\ 2y + 3x^{2} - 1 & 2x \end{pmatrix}.$$

- The LPMs are:

Class #2

EC400: SOF

Problem

Problem

_ ...

_ ...

Problem

Problem

Problem

Problem

Problem 10

$$D^{2}f(x,y) = \begin{pmatrix} 6xy & 2y + 3x^{2} - 1 \\ 2y + 3x^{2} - 1 & 2x \end{pmatrix}.$$

- The LPMs are:
 - $\bullet \det(L_1) = \det(6xy) = 6xy.$
 - $\det(L_2) = \det(D^2 f(x, y)) = 12x^2 y (2y + 3x^2 1)^2 = -9x^4 + 6x^2 4y^2 + 4y 1.$

Class #2

EC400: SOFI

Problem 1

Droblom

Problem

_ ...

_ ...

Problem (

Problem

Problem

Problem 9

Problem 10

• Check definiteness of the Hessian at each critical point:

Class #2

EC400: SOFI

Problem 1

⁹roblem

Problem

Problem

Problem

Problem

D., . | . |

Problem

Problem

- Check definiteness of the Hessian at each critical point:
 - At (0,0): $|L_1|=0$ and $|L_2|=-1<0 \implies$ indefinite \implies saddle point.

Class #2

EC400: SOF

Problem 1

Problem

Problem

D. . I I

. robiciii

Problem

Dooblass

Problem

Problem 10

• Check definiteness of the Hessian at each critical point:

- At (0,0): $|L_1|=0$ and $|L_2|=-1<0 \implies$ indefinite \implies saddle point.
- At (0,1): $|L_1|=0$ and $|L_2|=-1<0 \implies$ indefinite \implies saddle point.

Class #2

EC400: SOFI

Problem 1

'roblem

Problem

1 TODIEIII

Problem

B

Problem (

Problem 1

• Check definiteness of the Hessian at each critical point:

- At (0,0): $|L_1|=0$ and $|L_2|=-1<0 \implies$ indefinite \implies saddle point.
- At (0,1): $|L_1|=0$ and $|L_2|=-1<0 \implies$ indefinite \implies saddle point.
- At (1,0): $|L_1|=0$ and $|L_2|=-4<0 \implies$ indefinite \implies saddle point.

Class #2

EC400: SOFI

Problem 1

Dunklam (

_ ...

. robiciii

Problem

Problem

Problem

Problem

Problem 10

• At (-1,0): $|L_1|=0$ and $|L_2|=-1<0 \implies$ indefinite \implies saddle point.

Class #2

EC400: SOFI

Problem 1

Droblom

. robiciii

Problem

Problem

.

Problem

Duablam

- At (-1,0): $|L_1|=0$ and $|L_2|=-1<0 \implies$ indefinite \implies saddle point.
- At $\left(\frac{1}{\sqrt{5}}, \frac{2}{5}\right)$: $|L_1| = 12/5^{3/2} > 0$ and $|L_2| = 4/5 > 0 \implies$ p.d. \implies strict local min.

Class #2

EC400: SOF

Problem 1

Problem

Problem

Problem

Problem

Problem

Problem

Problem 9

- At (-1,0): $|L_1|=0$ and $|L_2|=-1<0 \implies$ indefinite \implies saddle point.
- At $\left(\frac{1}{\sqrt{5}},\frac{2}{5}\right)$: $|L_1|=12/5^{3/2}>0$ and $|L_2|=4/5>0 \Longrightarrow$ p.d. \Longrightarrow strict local min.
- At $\left(-\frac{1}{\sqrt{5}}, \frac{2}{5}\right)$: $|L_1| = -12/5^{3/2} < 0$ and $|L_2| = 4/5 > 0 \implies$ n.d. \implies strict local max.

Problem 1 Solution: Part (b)

Class #2

EC400: SOFF

Problem 1

, robiciii

Problem

_ ...

Problem

Problem 9

Problem 10

• No global max since the function is unbounded from above:

$$\lim_{x \to \infty} f(x, x) = \lim_{x \to \infty} x^3 + x^4 - x^2 = +\infty.$$

Problem 1 Solution: Part (b)

Class #2

EC400: SOFF

Problem 1

Problem

Problem

Problem

B

_ ...

FTODIETTI

.

_

Problem 9

Problem 1

• No global max since the function is unbounded from above:

$$\lim_{x \to \infty} f(x, x) = \lim_{x \to \infty} x^3 + x^4 - x^2 = +\infty.$$

No global min since the function is unbounded from below:

$$\lim_{x \to \infty} f(x, -x) = \lim_{x \to \infty} x^3 - x^4 + x^2 = -\infty. \quad \Box$$

Problem 2

Problem 2

Class #2

EC400: SOFI

Problem 2

. robiciii

Problem

Droblom

Problem (

i iobieiii :

Problem 1

Let $S \subset \mathbb{R}^n$ be an open set and $f: S \to \mathbb{R}$ be a twice-continuously differentiable function. Suppose that $Df(\mathbf{x}^*) = 0$. State the weakest sufficient conditions that the Hessian must satisfy at the critical point \mathbf{x}^* for:

• x* to be a local max;

 $2 \times x^*$ to be a strict local min.

Class #2

EC400: SOF

Problem 1

Problem 2

Problem 3

_ ...

Problem

Problem

Problem

Problem

Problem 9

Problem 10

For a local max:

$$\exists \varepsilon > 0 : D^2 f(\mathbf{x}) \le 0 \ \forall x \in B(\mathbf{x}^* \mid \varepsilon)$$

where
$$B(\mathbf{x}^* \mid \varepsilon) \equiv \{\mathbf{y} \in \mathbb{R}^n : ||\mathbf{y} - \mathbf{x}|| < \varepsilon\}.$$

Class #2

Problem 2

Problem 3

FTODIETT

Problem

Problem (

Problem 8

Problem 9

Problem 10

For a local max:

$$\exists \varepsilon > 0 : D^2 f(\mathbf{x}) \le 0 \ \forall x \in B(\mathbf{x}^* \mid \varepsilon)$$

where
$$B(\mathbf{x}^* \mid \varepsilon) \equiv \{\mathbf{y} \in \mathbb{R}^n : ||\mathbf{y} - \mathbf{x}|| < \varepsilon\}.$$

For a strict local min:

$$D^2 f(\mathbf{x}^*) \ge 0$$
 and $\exists \, \varepsilon > 0 : D^2 f(\mathbf{x}) > 0 \, \forall \, x \in \overline{B}(\mathbf{x}^* \mid \varepsilon)$

where $\overline{B}(\mathbf{x}^* \mid \varepsilon) \equiv B(\mathbf{x}^* \mid \varepsilon) \setminus \{\mathbf{x}^*\}.$

Problem 3

Problem 3

Class #2

EC400: SOFI

Problem 3

Problem

Problem 3

r roblem (

Duchlam

²roblem 10

Check whether $f(x, y) = x^4 + x^2y^2 + y^4 - 3x - 8y$ is concave or convex by using the Hessian.

Class #2

EC400: SOF

Problem

Problem 3

1 TODICIII

Problem

Problem

Toblem

Problem 9

Problem 10

Obtain the Hessian:

•
$$Df(x,y)' = \begin{pmatrix} 4x^3 + 2xy^2 - 3\\ 2x^2y + 4y^3 - 8 \end{pmatrix}$$

Class #2

EC400: SOFI

Problem

Froblem

Problem 3

Problem

Duelden

.

Froblem

Problem 9

Problem

Obtain the Hessian:

•
$$Df(x,y)' = \begin{pmatrix} 4x^3 + 2xy^2 - 3\\ 2x^2y + 4y^3 - 8 \end{pmatrix}$$

•
$$D^2 f(x,y) = \begin{pmatrix} 12x^2 + 2y^2 & 4xy \\ 4xy & 2x^2 + 12y^2 \end{pmatrix}$$

Class #2

Problem 1

Problem

Problem 3

. . .

D.-- I-1----

Dyohlom

Problem

Problem

Problem 9

Problem 10

• det
$$\begin{pmatrix} 12x^2 + 2y^2 & 4xy \\ 4xy & 2x^2 + 12y^2 \end{pmatrix} = 24(x^4 + y^4) + 132x^2y^2 \ge 0$$
,

Class #2

10400. 50

Problem 1

Problem

Problem 3

Problem

Problem

Problem

Troblem

Problem

Problem !

Problem 10

$$\det \begin{pmatrix} 12x^2 + 2y^2 & 4xy \\ 4xy & 2x^2 + 12y^2 \end{pmatrix} = 24(x^4 + y^4) + 132x^2y^2 \ge 0,$$

•
$$\det (12x^2 + 2y^2) = 12x^2 + 2y^2 \ge 0$$
, and

Class #2

EC400: SOI

Problem :

Problem

Problem 3

Droblem

Duelden

Problem

Duelden

Problem

Problem 10

$$\det \begin{pmatrix} 12x^2 + 2y^2 & 4xy \\ & & \\ 4xy & 2x^2 + 12y^2 \end{pmatrix} = 24(x^4 + y^4) + 132x^2y^2 \ge 0,$$

•
$$\det(12x^2 + 2y^2) = 12x^2 + 2y^2 \ge 0$$
, and

•
$$\det(2x^2 + 12y^2) = 2x^2 + 12y^2 \ge 0$$
.

Class #2

EC400: SOF

Dalla

TODICIII

Problem 3

1 TODIEIII

Problem

Problem

Problem

Problem

Problem

Problem 10

•
$$\det \begin{pmatrix} 12x^2 + 2y^2 & 4xy \\ 4xy & 2x^2 + 12y^2 \end{pmatrix} = 24(x^4 + y^4) + 132x^2y^2 \ge 0,$$

- \bullet det $(12x^2 + 2y^2) = 12x^2 + 2y^2 \ge 0$, and
- $\det(2x^2 + 12y^2) = 2x^2 + 12y^2 \ge 0.$
- All principal minors $\geq 0 \implies$ Hessian is p.s.d. $\implies f(\cdot)$ is convex on \mathbb{R}^2 .

Problem 4

Problem 4 [Harder]

Class #2

EC400: SOFI

Problem

roblem :

Problem

Problem 4

Duelden 4

1 Toblem (

1 TODICIII

Problem 9

Problem 1

Solve the following problem

$$\max_{x,y} \left[\min \left\{ x,y \right\} - x^2 - y^2 \right].$$

Class #2

EC400: SOF

FTODIETT

Froblem

Problem

Problem 4

_ .. .

Problem

Problem 9

Problem 1

• Can't use FOC since differentiability fails. What can we do?

Class #2

EC400: SOF

. ..

Problem

Problem 4

. . . .

Droblem

Problem (

Б. П.

Problem 9

Problem 1

• Can't use FOC since differentiability fails. What can we do?

• It turns out we can easily show that $x^* = y^*$ at any solution.

Class #2

EC400: SOF

D 11

1 TODICIII

Problem 4

Problem

Problem

Problem

Problem 9

Problem 1

Can't use FOC since differentiability fails. What can we do?

• It turns out we can easily show that $x^* = y^*$ at any solution.

• Let $f(x, y) = \min\{x, y\} - x^2 - y^2$ and WLOG suppose that $x^* > y^*$.

Class #2

Problem

Problem

Problem

Problem 4

Duelden

Droblem 6

Problem (

_ ...

Problem (

Problem 10

• Let $z^* = \frac{x^* + y^*}{2}$ and note that

Class #2

Problem 4

• Let
$$z^* = \frac{x^* + y^*}{2}$$
 and note that

•
$$y^* + y^* < x^* + y^* < x^* + x^*$$

Class #2

Problem 4

• Let
$$z^* = \frac{x^* + y^*}{2}$$
 and note that

•
$$y^* + y^* < x^* + y^* < x^* + x^* \iff y^* < z^* < x^*$$
.

Class #2

FIODICIII

Problem

Problem 4

Problem

Problem

Problem

Problem 9

Problem 10

• Let
$$z^* = \frac{x^* + y^*}{2}$$
 and note that

•
$$y^* + y^* < x^* + y^* < x^* + x^* \iff y^* < z^* < x^*$$
.

• By concavity of $-x^2$ and Jensen's inequality,

$$-\frac{1}{2}x^{*2} - \frac{1}{2}y^{*2} < -\left(\frac{x^* + y^*}{2}\right)^2$$

Problem 4 [Harder]

Class #2

• Let
$$z^* = \frac{x^* + y^*}{2}$$
 and note that

•
$$y^* + y^* < x^* + y^* < x^* + x^* \iff y^* < z^* < x^*$$
.

• By concavity of $-x^2$ and Jensen's inequality.

$$-\frac{1}{2}x^{*2} - \frac{1}{2}y^{*2} < -\left(\frac{x^* + y^*}{2}\right)^2$$

$$\iff -x^{*2} - y^{*2} < -2z^{*2}.$$

Class #2

EC400: SOF

Fiobleiii

Problem

Problem

Problem 4

D.

Problem

Problem

Problem

Problem !

Problem 10

$$f(x^*, y^*) = \min\{x^*, y^*\} - x^{*2} - y^{*2}$$

Class #2

EC400: SOF

. robiciii

Problem

Problem

Problem 4

Problem

Problem

Problem

Problem 9

Problem 10

$$f(x^*, y^*) = \min\{x^*, y^*\} - x^{*2} - y^{*2}$$
$$= y^* - x^{*2} - y^{*2}$$

Class #2

EC400: SOF

. robiciii

Problem

Problem

Problem 4

Problem!

Problem

Problem

Problem 9

Problem 10

$$f(x^*, y^*) = \min\{x^*, y^*\} - x^{*2} - y^{*2}$$
$$= y^* - x^{*2} - y^{*2}$$
$$< z^* - x^{*2} - y^{*2}$$

Class #2

EC400: SOF

Problem 1

Problem

Problem

Problem 4

i robiciii -

Problem

Problem

Problem

Problem

Problem !

Problem 10

$$f(x^*, y^*) = \min\{x^*, y^*\} - x^{*2} - y^{*2}$$

$$= y^* - x^{*2} - y^{*2}$$

$$< z^* - x^{*2} - y^{*2}$$

$$< z^* - 2z^{*2}$$

Class #2

EC400: SOF

. robiciii

Problem

Problem

Problem 4

Problem

Problem

Problem

Problem 9

Problem 10

$$f(x^*, y^*) = \min\{x^*, y^*\} - x^{*2} - y^{*2}$$

$$= y^* - x^{*2} - y^{*2}$$

$$< z^* - x^{*2} - y^{*2}$$

$$< z^* - 2z^{*2}$$

$$= \min\{z^*, z^*\} - z^{*2} - z^{*2}$$

Class #2

EC400: SOF

FIODIEIII

Problem

Problem

Problem 4

Problem

Problem

. ..

Problem

Problem 9

Problem 10

$$f(x^*, y^*) = \min\{x^*, y^*\} - x^{*2} - y^{*2}$$

$$= y^* - x^{*2} - y^{*2}$$

$$< z^* - x^{*2} - y^{*2}$$

$$< z^* - 2z^{*2}$$

$$= \min\{z^*, z^*\} - z^{*2} - z^{*2}$$

$$= f(z^*, z^*),$$

Class #2

EC400: SOF

Problem

roblem

Problem 3

Problem 4

B

D

Toblem

Problem 8

Problem 9

Problem 1

Therefore,

$$f(x^*, y^*) = \min\{x^*, y^*\} - x^{*2} - y^{*2}$$

$$= y^* - x^{*2} - y^{*2}$$

$$< z^* - x^{*2} - y^{*2}$$

$$< z^* - 2z^{*2}$$

$$= \min\{z^*, z^*\} - z^{*2} - z^{*2}$$

$$= f(z^*, z^*),$$

which is a contradiction since $f(x^*, y^*) > f(x, y) \ \forall (x, y) \in \mathbb{R}^2$.

Class #2

EC400: SOFI

Toblem

Problem

Problem 3

Problem 4

Duelden

Problem !

Duablana

Problem

Problem !

Problem 10

• Finally, since we know $x^* = y^*$, the problem simplifies to

$$\max_{x} x - 2x^2.$$

Class #2

EC400: SOFI

Problem :

Problem 3

Problem 4

Problem !

Problem

_ ...

Problem

Problem

Problem 10

• Finally, since we know $x^* = y^*$, the problem simplifies to

$$\max_{x} x - 2x^2.$$

• FOC:
$$\frac{\partial \tilde{f}(x^*)}{\partial x} = 1 - 4x^* = 0 \implies (x^*, y^*) = (\frac{1}{4}, \frac{1}{4}).$$

Class #2

EC400: SOF

• Finally, since we know $x^* = y^*$, the problem simplifies to

$$\max_{x} x - 2x^2.$$

- FOC: $\frac{\partial \tilde{f}(x^*)}{\partial x} = 1 4x^* = 0 \implies (x^*, y^*) = (\frac{1}{4}, \frac{1}{4}).$
- SOC: $\frac{\partial^2 \tilde{f}(x^*)}{x^2} = -4 < 0$, so the objective function is concave and we have found the solution.

Problem 5

Problem 5

Class #2

EC400: SOFI

. ..

'roblem

Problem

Droblom

Problem 5

Problem (

Problem

Problem 8

Problem 9

Problem 10

Find the optimal solution for the following program

$$\max_{x,y} x \text{ subject to } x^3 + y^2 = 0.$$

Is the Lagrange approach appropriate?

Class #2

EC400: SOFI

· robiciii

robiem

Problem

Problem 5

. ..

Problem

Problem

Problem 9

Problem 10

The constraint qualification fails:

 \bullet (x,y)=(0,0), a critical point of the constraint, belongs to the constraint set, so the procedure is not well defined and we cannot use the Lagrange Theorem.

Class #2

EC400: SOF

Problem

Problem

Problem

- ...

Problem 5

Problem

Problem

Problem

Problem

Problem 10

The constraint qualification fails:

- \bullet (x,y)=(0,0), a critical point of the constraint, belongs to the constraint set, so the procedure is not well defined and we cannot use the Lagrange Theorem.
- ullet To see this, note that (0,0) solves

$$Dh(x,y)' = \begin{pmatrix} 3x^2 \\ 2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

while it satisfies h(0,0)=0, where $h(x,y)=x^3+y^2$ is the constraint function.

Class #2

EC400: SOF

Froblem

Problem

Problem

Problem 5

Problem

Problem

Problem 9

Problem 1

While the Lagrange method is not appropriate, it is easy to see that $(x^*,y^*)=(0,0)$ is a solution.

Notice that the solution $(x^*, y^*) = (0, 0)$ is **not a critical point of the Lagrangian**. There is no solution to the FOC

$$1 - 3\lambda x^2 = 0$$
; $2\lambda y = 0$, $x^3 + y^2 = 0$

Problem 6

Problem 6

Class #2

EC400: SOFE

Problem

Problem

Problem -

. . . .

Problem 6

r robiem (

. . . .

Duahlam (

Problem 10

Solve the following problem

$$\max_{x_1,x_2} x_1^2 x_2$$
 subject to $2x_1^2 + x_2^2 = 3$.

Class #2

EC400: SOFI

roblem

Problem 3

Fioblem

Problem

Problem 6

Problem 8

Problem 9

Problem It

• Check the **constraint qualification**:

Class #2

EC400: SOFF

, robiciii

Problem

Problem

Problem

Problem

Problem 6

Problem

Problem 9

Problem 10

• Check the constraint qualification:

It is **satisfied**. The only critical point of the constraint is $(x_1, x_2) = (0, 0)$, the only solution to

$$Dh(x_1, x_2)' = \begin{pmatrix} 4x_1 \\ 2x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

and it is not in the constraint set as it does not satisfy

$$h(x_1, x_2) = 2x_1^2 + x_2^2 - 3 = 0.$$

Class #2

EC400: SOF

roblem

Problem

Problem

Problem

Problem 6

r robiem (

Dualdana (

Problem 10

• Form the **Lagrangian**:

$$\mathcal{L}(x_1, x_2, \mu) = x_1^2 x_2 - \mu (2x_1^2 + x_2^2 - 3)$$

Class #2

Froblem

Problem 3

Dualdam I

Problem !

Problem 6

Problem

Problem 10

• Form the Lagrangian:

$$\mathcal{L}(x_1, x_2, \mu) = x_1^2 x_2 - \mu (2x_1^2 + x_2^2 - 3)$$

Take the FOC:

$$[x_1]$$

$$\frac{\partial \mathcal{L}(x_1, x_2, \mu)}{\partial x_1} = 2x_1x_2 - 4\mu x_1 = 0$$

$$[x_2]$$

$$\frac{\partial \mathcal{L}(x_1, x_2, \mu)}{\partial x_2} = x_1^2 - 2\mu x_2 = 0$$

$$[\mu]$$

$$\frac{\partial \mathcal{L}(x_1, x_2, \mu)}{\partial \mu} = 2x_1^2 + x_2^2 - 3 = 0$$

Class #2

EC400: SOF

_ ...

Problem

Problem

Problem

Problem 6

Doobless

Problem

Problem 9

Problem 1

Solve to find the critical points:

$$(0,\sqrt{3},0)$$
, $(0,-\sqrt{3},0)$, $(1,1,1/2)$, $(-1,-1,-1/2)$, $(1,-1,-1/2)$, and $(-1,1,1/2)$.

Class #2

EC400: SOF

Froblem

Problem

Problem

Problem

Problem 6

Problem

Problem 9

Problem 10

Solve to find the critical points:

$$(0,\sqrt{3},0),\,(0,-\sqrt{3},0),\,(1,1,1/2),\,(-1,-1,-1/2),\,(1,-1,-1/2),\\ \text{and }(-1,1,1/2).$$

 Finally, compact constraint set ⇒ ∃ constrained max (and min). Must be among the critical points, so just plug into objective function and compare. The solution is:

$$(x_1^*, x_2^*) \in \{(1, 1), (-1, 1)\}.$$

Problem 7

Problem 7 [Harder]

Class #2

EC400: SOFI

_ ...

'roblem

Problem

_ ...

Problem

Problem

Problem 7

Problem

Problem 9

roblem 10

Solve the following problem when $a \in \left[\frac{1}{2}, \frac{3}{2}\right]$

$$\max_{x,y \, \geq \, 0} x^2 + y^2 \; \text{ subject to } \; ax + y = 1.$$

Class #2

EC400: SOFI

говієні

Problem

Problem

Problem

Б. П.

Problem 7

Problem 9

Problem 10

Note that:

The objective function and the Lagrangian are convex

Class #2

EC400: SOF

Problem

Problem

Problem

Problem 7

Problem

Problem 9

Problem 10

Note that:

The objective function and the Lagrangian are convex

FOC will identify a minimum.

Class #2

EC400: SOFI

- ...

roblem

Problem

Problem

Problem

Problem 7

Problem 9

Problem 10

Note that:

 \bullet The objective function and the Lagrangian are convex \implies FOC will identify a minimum.

• The k-level curves of the objective function are quarter-circles of radius \sqrt{k} centered at the origin in \mathbb{R}^2_+ :

$$x^2 + y^2 = k.$$

Class #2

EC400: SOFF

roblem

Problem :

D. . I I

D. ...L.L....

Problem 7

Problem 8

Problem 9

Problem 10

EC400: SOFF

Fioblem

roblem

Problem

Problem

Problem

Problem 7

Problem 8

Problem 9

_ .. .

EC400: SOFF

Fiobleiii

Problem

Problem

Problem

Problen

Problem 7

Problem 8

Problem 9

Problem 10

Class #2

EC400: SOFF

_ ...

Problem 2

Problem

D

n ...

Problem 7

. . . .

Duahlam (

Problem 10

• The solution is given by the corner (potentially both) that yields the higher value of the objective function:

$$f(0,1) = 1 \ge \frac{1}{a^2} = f(\frac{1}{a}, 1)$$

$$\iff a^2 \leq 1.$$

Class #2
EC400: SOFP

 The solution is given by the corner (potentially both) that yields the higher value of the objective function:

$$f(0,1) = 1 \gtrsim \frac{1}{a^2} = f(\frac{1}{a}, 1)$$

$$\iff a^2 \lesssim 1.$$

 \bullet Thus, for $a\in\left[\frac{1}{2},\frac{3}{2}\right]$, the solution to the constrained optimization problem is

$$(x^*, y^*) = \begin{cases} \left(\frac{1}{a}, 0\right) & \text{for } a \in \left[\frac{1}{2}, 1\right] \\ (0, 1) & \text{for } a \in \left[1, \frac{2}{2}\right] \end{cases}. \quad \Box$$

Problem 8

Problem 8 [Harder]

Class #2

EC400: SOF

Duebless

i robiem .

FIODIEIII

Problem

Problem

Problem (

Problem 1

Problem 8

Problem 9

²roblem 10

Let X be a convex subset of \mathbb{R}^n , $f:X\to\mathbb{R}$ a concave function, $g:X\to\mathbb{R}^m$ a convex function, and a a vector in \mathbb{R}^m . Consider the following problem

$$\max_{x \in X} f(x)$$
 subject to $g(x) \le a$.

What is the Lagrangian for this problem? Prove that the Lagrangian is a concave function of the choice variable x on X.

Class #2

EC400: SOF

D. H.

Problem

Problem

Problem

Problem (

Duahlam *

Problem 8

Problem 9

Problem 10

The Lagrangian is

$$\mathcal{L}(x, \mu \mid a) = f(x) - \mu (g(x) - a),$$

where $\mu \in \mathbb{R}^m$ is a row vector of Lagrange multipliers.

Class #2

EC400: SO

Froblem

ablam 2

Problem 4

Problem

oblem

Problem 8
Problem 9

Problem 10

Proof.

```
Class #2
```

EC400: SOF

1 TOBICIII

говієні

roblem :

Problem 4

Problem

- ...

Problem 8

Problem 9

Problem 10

Proof.

• Take any $x, x' \in X$.

```
Class #2
```

EC400: SOF

1 TOBICIII

Oblem

Problem :

Problem

Problem

Dualdana

Problem 8

Problem 9

Problem 10

Proof.

```
Class #2
```

EC400: SOF

FIODIEIII

roblem

Problem 3

Problem

roblem !

Problem (

D. . . lala

Problem 8

Problem 9

Problem 10

Proof.

$$f(\cdot)$$
 concave $\implies f(tx + (1-t)x') \ge tf(x) + (1-t)f(x')$


```
Class #2
```

EC400: SOFI

Problem

roblem

Problem 3

Problem 4

Problem !

Dualdam (

Problem t

Problem 8

Problem 9

Problem 10

Proof.

$$f(\cdot)$$
 concave $\implies f(tx + (1-t)x') \ge tf(x) + (1-t)f(x')$

$$g(\cdot)$$
 convex $\implies -\mu g \left(tx + (1-t) x' \right) \ge -\mu \left(tg(x) + (1-t) g(x') \right)$


```
Class #2
```

EC400: SOF

Problem

roblem

Problem 3

Problem 4

Problem F

Problem (

r robiem c

Problem 8

Problem 9

Problem 10

Proof.

$$f(\cdot)$$
 concave $\implies f(tx + (1-t)x') \ge tf(x) + (1-t)f(x')$

$$g(\cdot)$$
 convex $\implies -\mu g \left(tx + (1-t)x'\right) \ge -\mu \left(tg(x) + (1-t)g(x')\right)$

$$\mathcal{L}(tx + (1-t)x', \mu \mid a) \ge t \Big[f(x) - \mu(g(x) - a) \Big] + (1-t) \Big[f(x') - \mu(g(x') - a) \Big]$$


```
Class #2
```

EC400: SOI

Problem

roblem

roblem

Due blesse /

- ...

Problem 6

Problem 8

Problem 9

Problem 10

Proof.

$$f(\cdot)$$
 concave $\implies f(tx + (1-t)x') \ge tf(x) + (1-t)f(x')$

$$g(\cdot) \; \mathsf{convex} \;\; \Longrightarrow \; -\mu g \big(tx + (1-t) \, x' \big) \geq -\mu \big(tg(x) + (1-t) \, g(x') \big)$$

$$\mathcal{L}(tx + (1-t)x', \mu \mid a) \ge t \Big[f(x) - \mu \big(g(x) - a \big) \Big] + (1-t) \Big[f(x') - \mu \big(g(x') - a \big) \Big]$$

$$= t\mathcal{L}(x, \mu \mid a) + (1 - t)\mathcal{L}(x', \mu \mid a).$$

Problem 9

Problem 9

Class #2

EC400: SOFI

- ...

Problem

Problem

. ..

Problem t

Problem

Problem 9

Problem 10

Consider the problem of maximizing xyz subject to $x+y+z\leq 1, x\geq 0, y\geq 0, \text{ and } z\geq 0.$ Obviously, the three latter constraints do not bind, and we can concentrate only on the first constraint, $x+y+z\leq 1.$ Find the solution and the Lagrange multiplier, and show how the optimal value would change if instead the constraint was changed to $x+y+z\leq 9/10.$

Class #2

EC400: SOF

_ ...

Problem

Problem

Problem

Problem

_ ...

Problem

Problem 9

Problem 10

Class #2

EC400: SOF

Problem

rroblem

Problem

1 TODICII

Problem

Problem

Problem

Problem

Problem 9

Problem 10

Lagrangian:

$$\mathcal{L}(x, y, z, \mu) = xyz - \mu(x + y + z - 1).$$

Class #2

Problem 9

• FOC:

[x]

[y]

[z]

 $[\mu]$

 $y^*z^* - \mu = 0$

 $x^*z^* - \mu = 0$

 $x^*y^* - \mu = 0$

 $x^* + y^* + z^* - 1 = 0$

Class #2

EC400: SOFF

roblem

Problem

Problem

Droblem

n ...

Froblem

Fiobleiii

Problem

Problem 9

Problem 10

• From [x] and [y]: $z^* \neq 0 \implies x^* = y^*$. From [x] and [z]: $u^* \neq 0 \implies x^* = z^*$. Thus, $x^* = y^* = z^*$.

Class #2

EC400: SOFI

. robiciii

Problem

Problem

Problem

Problem

Problem

Problem

Problem 9

- From [x] and [y]: $z^* \neq 0 \implies x^* = y^*$. From [x] and [z]: $y^* \neq 0 \implies x^* = z^*$. Thus, $x^* = y^* = z^*$.
- Plugging into $[\mu]$: $x^* = y^* = z^* = \frac{1}{3} \implies \mu^* = \frac{1}{9}$.

Class #2

D. .. I. I.

Problem

Problem

Problem 6

Problem 9

• From [x] and [y]:
$$z^* \neq 0 \implies x^* = y^*$$
. From [x] and [z]: $y^* \neq 0 \implies x^* = z^*$. Thus, $x^* = y^* = z^*$.

• Plugging into
$$[\mu]$$
: $x^* = y^* = z^* = \frac{1}{3} \implies \mu^* = \frac{1}{9}$.

• Optimal value:
$$f(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = \frac{1}{27}$$
.

Class #2

EC400: SOFI

1 TODICIII

Problem

Problem

D. . I I

. . . .

. robiciii

Problem (

Problem

Problem 9

- From [x] and [y]: $z^* \neq 0 \implies x^* = y^*$. From [x] and [z]: $y^* \neq 0 \implies x^* = z^*$. Thus, $x^* = y^* = z^*$.
- Plugging into $[\mu]$: $x^* = y^* = z^* = \frac{1}{3} \implies \mu^* = \frac{1}{9}$.
- Optimal value: $f(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = \frac{1}{27}$.
- If the constraint was changed to $x+y+z \leq \frac{9}{10}$, the solution would change to $3x^* = \frac{9}{10} \implies x^* = y^* = z^* = \frac{3}{10} \implies \mu^* = \frac{9}{100}$, and the optimal value would fall to $\left(\frac{3}{10}\right)^3 = \frac{27}{1000}$.

Problem 10 [Harder]

Class #2

EC400: SOF

Froblem

'roblem

Problem

Problem

Problem

Problem 6

Dualdana 3

r robietii c

Problem 9

Problem 10

Consider a function $f: \mathbb{R}^n \to \mathbb{R}$ satisfying:

$$f(x) = \begin{cases} u(x) & \text{if } g(x) \le 0 \\ v(x) & \text{if } g(x) \ge 0 \end{cases}.$$

Further, suppose that: (i) u(x) = v(x) if g(x) = 0; (ii) u and v are differentiable, strictly concave, and posses maximizer in \mathbb{R}^n ; and (iii) g(x) is differentiable and strictly convex. Carefully explain how you would solve the problem of maximizing f by choosing $x \in \mathbb{R}^n$.

Class #2

EC400: SOFE

Problem 1

roblem

Droblem

Froblem

Froblem

Problem

Droblem

Froblem

Problem

Problem 8

Problem 9

Problem 10

 $\bullet \ \text{ If } \exists \, x \in \mathbb{R}^n : g(x) < 0.$

Class #2

EC400: SOF

roblem

Problem

Droblom

_ ...

Problem

. . - - . - . . .

Problem

Problem 9

Problem 10

- If $\exists x \in \mathbb{R}^n : g(x) < 0$.
 - Solve

 $\max_{x\in\mathbb{R}^n}u(x) \ \ \text{subject to} \ \ g(x)\leq 0.$

Class #2

EC400: SOF

FIODIEIII

^oroblem

Problem

Problem

Duablam

Problem 9

Problem 10

- - Solve

$$\max_{x\in\mathbb{R}^n}u(x) \ \ \text{subject to} \ \ g(x)\leq 0.$$

• Problem satisfies KKT conditions and admits solution since $u(\cdot)$ possesses maximizer in \mathbb{R}^n .

Class #2

EC400: SOFI

Froblem

Problem

Problem

Droblem

. . . .

FTODIEIII

Problem

Problem 9

Problem 10

• If
$$\exists x \in \mathbb{R}^n : g(x) < 0$$
.

Solve

$$\max_{x\in\mathbb{R}^n}u(x)\ \ \text{subject to}\ \ g(x)\leq 0.$$

- Problem satisfies KKT conditions and admits solution since $u(\cdot)$ possesses maximizer in \mathbb{R}^n .
- Maximizers are the solutions to

$$Du(x) - \lambda Dg(x) = 0, \lambda g(x) = 0, \lambda \ge 0, g(x) \le 0.$$

Class #2

EC400: SOF

Fiobleii

Problem

Problem

D. ...L.L....

B

Problem

Problem

Problem 9

Problem 10

Solve

$$\max_{x\in\mathbb{R}^n}u(x) \ \text{ subject to } \ g(x)\leq 0.$$

- Problem satisfies KKT conditions and admits solution since $u(\cdot)$ possesses maximizer in \mathbb{R}^n .
- Maximizers are the solutions to

$$Du(x) - \lambda Dg(x) = 0, \lambda g(x) = 0, \lambda \ge 0, g(x) \le 0.$$

• Call a solution to this problem x_u^* .

Class #2

EC400: SOFI

D. H.

'roblem

Problem

_ ...

riobleiii

Problem 6

Problem 8

Problem 9

Problem 10

 $\bullet \ \ \mathsf{If} \ \exists \, x \in \mathbb{R}^n : g(x) > 0.$

- Class #2
- EC400: SOFI
- Problem
- Problem
- Problem
- Problem
-
- B
- Froblem
- Problem 8
- Problem 9
- Problem 10

- If $\exists x \in \mathbb{R}^n : g(x) > 0$.
 - Solve

$$\max_{x \in \mathbb{R}^n} v(x) \text{ subject to } -g(x) \leq 0.$$

Problem 10 [Harder]

Class #2

EC400: SOF

Problem

Problem

Problem

Duelden

. . . .

Fiobleiii

Duahlam

Problem 9

Problem 10

• If
$$\exists x \in \mathbb{R}^n : g(x) > 0$$
.

Solve

$$\max_{x \in \mathbb{R}^n} v(x) \text{ subject to } -g(x) \leq 0.$$

• Problem admits solution as $v(\cdot)$ possesses maximizer in \mathbb{R}^n . But since -g(x) is strictly convex, does not satisfy conditions for KKT theorem. KKT FOC remain necessary conditions for max.

Problem 10 [Harder]

Class #2

EC400: SOF

Problem

Problem

Problem

FTODIETT

Problem

Problem 9

Problem 10

• If $\exists x \in \mathbb{R}^n : g(x) > 0$.

Solve

$$\max_{x \in \mathbb{R}^n} v(x) \text{ subject to } -g(x) \leq 0.$$

- Problem admits solution as $v(\cdot)$ possesses maximizer in \mathbb{R}^n . But since -g(x) is strictly convex, does not satisfy conditions for KKT theorem. KKT FOC remain necessary conditions for max.
- Maximizers must be among the solutions to

$$Dv(x) + \lambda Dg(x) = 0, \lambda g(x) = 0, \lambda \ge 0, g(x) \ge 0.$$

Class #2

EC400: SOF

Problem

Problem

Problem

FTODIETTI

Problem

Problem 9

Problem 10

$$\bullet \ \text{If } \exists \, x \in \mathbb{R}^n : g(x) > 0.$$

Solve

$$\max_{x \in \mathbb{R}^n} v(x) \text{ subject to } -g(x) \leq 0.$$

- Problem admits solution as $v(\cdot)$ possesses maximizer in \mathbb{R}^n . But since -g(x) is strictly convex, does not satisfy conditions for KKT theorem. KKT FOC remain necessary conditions for max.
- Maximizers must be among the solutions to

$$Dv(x) + \lambda Dg(x) = 0, \lambda g(x) = 0, \lambda \ge 0, g(x) \ge 0.$$

• Call a solution to this problem x_v^* .

Class #2

EC400: SOF

roblem

Problem

Problem

B ... L I

Dyohlom

Problem (

1 TODICITI (

Problem 9

Problem 10

Finally

• If $g(x) < 0 \forall x \in \mathbb{R}^n$, a solution is x_u^* .

Problem 10 [Harder]

Class #2

EC400: SOF

robiem

Problem

Problem

Problem

Duelden

Problem

Problem 9

Problem 10

- If $g(x) < 0 \forall x \in \mathbb{R}^n$, a solution is x_u^* .
- If $g(x) > 0 \forall x \in \mathbb{R}^n$, a solution is x_v^* .

Class #2

EC400: SOF

robiem

Problem

Problem

Problem

Problem

Duahlam

Problem

Problem 10

- If $g(x) < 0 \forall x \in \mathbb{R}^n$, a solution is x_u^* .
- If $g(x) > 0 \forall x \in \mathbb{R}^n$, a solution is x_v^* .
- If $\exists x \in \mathbb{R}^n : g(x) < 0$ and $\exists x \in \mathbb{R}^n : g(x) > 0$,

Class #2

EC400: SOFI

_ ...

roblem

Problem

D.

Problem t

.

_ ...

Problem s

Problem 10

- If $g(x) < 0 \forall x \in \mathbb{R}^n$, a solution is x_u^* .
- If $g(x) > 0 \forall x \in \mathbb{R}^n$, a solution is x_v^* .
- If $\exists x \in \mathbb{R}^n : g(x) < 0$ and $\exists x \in \mathbb{R}^n : g(x) > 0$,
 - ullet x_u^* is a solution if $u(x_u^*) \geq v(x_v^*)$; and

Class #2

EC400: SOF

'roblem

Problem

Droblom

1 TODICIII

Problem (

Problem

Problem 9

Problem 10

- If $g(x) < 0 \forall x \in \mathbb{R}^n$, a solution is x_u^* .
- If $g(x) > 0 \forall x \in \mathbb{R}^n$, a solution is x_v^* .
- If $\exists x \in \mathbb{R}^n : g(x) < 0$ and $\exists x \in \mathbb{R}^n : g(x) > 0$,
 - ullet x_u^* is a solution if $u(x_u^*) \geq v(x_v^*)$; and
 - x_v^* is a solution if $u(x_u^*) \le v(x_v^*)$.

Class #2

EC400: SOFP

$$-6x^* + 6y^* = 0 \iff x^* = y^*$$

Class #2

EC400: SOFF

$$\bullet$$
 $-6x^* + 6y^* = 0 \iff x^* = y^*$

•
$$4x^{*3} + 2x^* - 6x^* = 0 \iff x^*(x^* + 1)(x^* - 1) = 0 \iff x^* = 0 \text{ or } x^* = -1 \text{ or } x^* = 1.$$

Class #2

EC400: SOFP

Let
$$g(x) = x^2(x^2 - 2)$$
 and note that $\frac{dg(x)}{dx} = 4x(x+1)(x-1)$, so

$$\bullet \frac{\mathrm{d}g(x)}{\mathrm{d}x} < 0 \ \forall \ x \in (-\infty, -1) \cup (0, 1),$$

Class #2

EC400: SOFP

Let
$$g(x) = x^2(x^2 - 2)$$
 and note that $\frac{dg(x)}{dx} = 4x(x+1)(x-1)$, so

$$\bullet \frac{\mathrm{d}g(x)}{\mathrm{d}x} < 0 \ \forall \ x \in (-\infty, -1) \cup (0, 1),$$

$$\bullet \frac{\mathrm{d}g(x)}{\mathrm{d}x} > 0 \ \forall \ x \in (-1,0) \cup (1,+\infty),$$
 and

Class #2

EC400: SOFP

Let
$$g(x) = x^2(x^2 - 2)$$
 and note that $\frac{dg(x)}{dx} = 4x(x+1)(x-1)$, so

$$\bullet \frac{\mathrm{d}g(x)}{\mathrm{d}x} < 0 \ \forall \ x \in (-\infty, -1) \cup (0, 1),$$

$$\bullet$$
 $\frac{\mathrm{d}g(x)}{\mathrm{d}x} > 0 \ \forall \ x \in (-1,0) \cup (1,+\infty)$, and

$$\bullet \ \frac{\mathrm{d}g(x)}{\mathrm{d}x} = 0 \ \forall \ x \in \{-1, 0, 1\}.$$

Class #2

EC400: SOFI

 ${\sf Appendix}$

Rewrite the system as

$$y^*(y^* + 3x^{*2} - 1) = 0$$

$$x^*(2y^* + x^{*2} - 1) = 0$$

Class #2

EC400: SOFI

Appendix

Rewrite the system as

$$y^*(y^* + 3x^{*2} - 1) = 0$$

$$x^*(2y^* + x^{*2} - 1) = 0$$

•
$$x^* = 0 \implies y^*(y^* - 1) = 0 \iff y^* = 0 \text{ or } y^* = 1$$

 $\implies (x^*, y^*) \in \{(0, 0), (0, 1)\}.$

Class #2

EC400: SOFI

Appendix

Rewrite the system as

$$y^*(y^* + 3x^{*2} - 1) = 0$$
$$x^*(2y^* + x^{*2} - 1) = 0$$

•
$$x^* = 0 \implies y^*(y^* - 1) = 0 \iff y^* = 0 \text{ or } y^* = 1$$

 $\implies (x^*, y^*) \in \{(0, 0), (0, 1)\}.$

•
$$y^* = 0 \implies x^*(x^{*2} - 1) = 0 \iff x^* = 0 \text{ or } x^* = -1 \text{ or } x^* = 1$$

 $\implies (x^*, y^*) \in \{(-1, 0), (1, 0)\}$

Class #2

EC400: SOFE

•
$$x^* \neq 0$$
 and $y^* \neq 0 \implies$

$$y^* + 3x^{*2} - 1 = 0$$
$$2y^* + x^{*2} - 1 = 0$$
$$\implies (x^*, y^*) \in \left\{ \left(-\frac{1}{\sqrt{5}}, \frac{2}{5} \right), \left(\frac{1}{\sqrt{5}}, \frac{2}{5} \right) \right\}$$

Class #2

EC400: SOFI

Appendix

• From $[x_1]$: $2x_1(x_2 - 2\mu) = 0$. So, either $x_1 = 0$ or $x_2 = 2\mu$.

Class #2

EC400: SOFF

- From $[x_1]$: $2x_1(x_2-2\mu)=0$. So, either $x_1=0$ or $x_2=2\mu$.
- If $x_1 = 0$:

Class #2

EC400: SOFF

- From $[x_1]$: $2x_1(x_2-2\mu)=0$. So, either $x_1=0$ or $x_2=2\mu$.
- If $x_1 = 0$:
 - From $[\mu]$: $x_2 = \pm \sqrt{3}$.

Class #2

EC400: SOFI

• From
$$[x_1]$$
: $2x_1(x_2-2\mu)=0$. So, either $x_1=0$ or $x_2=2\mu$.

- If $x_1 = 0$:
 - From $[\mu]$: $x_2 = \pm \sqrt{3}$.
 - From $[x_2]$: $x_1 = 0$ and $x_2 \neq 0 \implies \mu = 0$.

Class #2

EC400: SOF

Appendix

• From
$$[x_1]$$
: $2x_1(x_2-2\mu)=0$. So, either $x_1=0$ or $x_2=2\mu$.

• If
$$x_1 = 0$$
:

• From
$$[\mu]$$
: $x_2 = \pm \sqrt{3}$.

• From
$$[x_2]$$
: $x_1 = 0$ and $x_2 \neq 0 \implies \mu = 0$.

So $(0, \sqrt{3}, 0)$ and $(0, -\sqrt{3}, 0)$ are critical points.

Class #2

EC400: SOFF

Appendix

• If $x_1 \neq 0$:

Class #2

EC400: SOFF

- If $x_1 \neq 0$:
 - From $[x_1]$: $\mu = \frac{x_2}{2}$.

Class #2

EC400: SOFF

 ${\sf Appendix}$

- If $x_1 \neq 0$:
 - From $[x_1]$: $\mu = \frac{x_2}{2}$.
 - Plugging into $[x_2]$: $x_1^2 = x_2^2$.

Class #2

EC400: SOFP

 ${\sf Appendix}$

- If $x_1 \neq 0$:
 - From $[x_1]$: $\mu = \frac{x_2}{2}$.
 - Plugging into $[x_2]$: $x_1^2 = x_2^2$.
 - Plugging into $[\mu]$: $3x_1^2 = 3 \iff x_1 = \pm 1$.

Class #2

EC400: SOFF

Appendix

• If
$$x_1 \neq 0$$
:

- From $[x_1]$: $\mu = \frac{x_2}{2}$.
- Plugging into $[x_2]$: $x_1^2 = x_2^2$.
- Plugging into $[\mu]$: $3x_1^2 = 3 \iff x_1 = \pm 1$.

So (1,1,1/2), (-1,-1,-1/2), (1,-1,-1/2), and (-1,1,1/2) are critical points.

Class #2

EC400: SOFI

Appendix

Evaluating the objective function $f(x_1, x_2) = x_1^2 x_2$ at the critical points:

Class #2

EC400: SOFP

Appendix

Evaluating the objective function $f(x_1, x_2) = x_1^2 x_2$ at the critical points:

•
$$f(0,\sqrt{3}) = f(0,-\sqrt{3}) = 0;$$

Class #2

EC400: SOFP

Appendix

Evaluating the objective function $f(x_1, x_2) = x_1^2 x_2$ at the critical points:

•
$$f(0,\sqrt{3}) = f(0,-\sqrt{3}) = 0$$
;

•
$$f(1,1) = f(-1,1) = 1$$
;

Class #2

Evaluating the objective function $f(x_1, x_2) = x_1^2 x_2$ at the critical points:

•
$$f(0,\sqrt{3}) = f(0,-\sqrt{3}) = 0$$
;

•
$$f(1,1) = f(-1,1) = 1$$
;

•
$$f(1,-1) = f(-1,-1) = -1$$
.

Class #2

EC400: 50F

Appendix

Evaluating the objective function $f(x_1, x_2) = x_1^2 x_2$ at the critical points:

•
$$f(0,\sqrt{3}) = f(0,-\sqrt{3}) = 0$$
;

•
$$f(1,1) = f(-1,1) = 1$$
;

•
$$f(1,-1) = f(-1,-1) = -1$$
.

Thus (1,1) and (-1,1) are maximizers.

