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SR Show that the general quadratic form
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2 2
117 + 1271 T2 + A22T5

oo () ()

and find its unique symmetric representation.

can be written as
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aip a1z T o
(z ) ") = (anm + 02 apm + ant)
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Just multiply out:

a1 G12 2 2
(11 ) = (@12 + 02 @127 + ax1s)
0 ax T2 i)

= a11$12 + 02120 + @917 + 0»2251322
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= a11$12 + 02120 + @917 + 0»2251322
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2 2
= a11% + 122122 + A2 .
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Problem 1 The symmetric representation is

ail a12/2 I
(o o) (am/2 (g2 ) <$2>
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Problem 2

List all the principal minors of a general (3 x 3) matrix and denote
which are the three leading principal minors.
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Let
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a1 G2 13
A=|ay ax a23

as; ag2 0as3

be a generic 3 x 3 matrix.
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The k'™ order principal minors of A are the determinants of each
k*h-order principal submatrix obtained by deleting (3 — k) columns and
the corresponding rows of A.
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The k'™ order principal minors of A are the determinants of each
k*h-order principal submatrix obtained by deleting (3 — k) columns and
the corresponding rows of A.

@ 3" order:

A3=A

since we delete 3 — 3 = 0 columns and rows. Therefore, the only
3*d-order principal minor of A is

|As| = [A].
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@ 27 order: Delete 3 — 2 = 1 column and row.
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@ 27 order: Delete 3 — 2 = 1 column and row.
o Delete 15¢ column and row:
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@ 27 order: Delete 3 — 2 = 1 column and row.
o Delete 15¢ column and row:
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1 a2

> |A2‘ = a32
aii

- |A%‘ - as1

a23

ass

a13

ass
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@ 1%t order: Delete 3 — 1 = 2 columns and rows.
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ai2
Problem 2
a2
@ 1t order: Delete 3 — 1 = 2 columns and rows.
o Delete 1%t and 22 columns and rows:
p s a p nld\
1,2 1,2
A} = phr-apo—asz-| —> ‘A1 ‘:033

&l’l aga  a33
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[ al,
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Problem 2 A]. — a e ’Al’g) = 29
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o Delete 15t and 3™ columns and rows:
[ al,

= ’A}’g) = a2

o Delete 27 and 3'4 columns and rows:

all aj2 a

2,3 2,3
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last (3 — k) columns and rows of A.
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Class 71 The k' order leading principal minors of A are the determinants of
SRR the k'"-order leading principal submatrices, obtained by deleting the
last (3 — k) columns and rows of A.

Problem 2

—> The leading principal submatrices contain the first £ elements of
the diagonal. Thus,



Problem 2

Solution

Class 71 The k' order leading principal minors of A are the determinants of
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last (3 — k) columns and rows of A.
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—> The leading principal submatrices contain the first £ elements of
the diagonal. Thus,

@ L] = an,
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The k' order leading principal minors of A are the determinants of
the k'"-order leading principal submatrices, obtained by deleting the
last (3 — k) columns and rows of A.

—> The leading principal submatrices contain the first £ elements of
the diagonal. Thus,

@ L] = an,

aj;  ai2

° |Ly| = , and

a21 Q22
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Class 71 The k' order leading principal minors of A are the determinants of
SRR the k'"-order leading principal submatrices, obtained by deleting the
last (3 — k) columns and rows of A.

Problem 2

—> The leading principal submatrices contain the first £ elements of
the diagonal. Thus,

@ L] = an,

aj;  ai2

° |Ly| = , and
a21 Q22

° L] = |Al
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Determine the definiteness of the following symmetric matrices:
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@ Q)=o) (0 c) (z) T
2

Problem 3

@ ¢ >0 = Q(z) > 0Vz # 0 and the matrix is p.s.d.
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Problem 3

@ ¢ >0 = Q(z) > 0Vz # 0 and the matrix is p.s.d.

@ ¢ <0 = Q(z) <0Vz # 0 and the matrix is n.s.d.
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@ Q)=o) (0 c) (zc) T
2

Problem 3

@ ¢ >0 = Q(z) > 0Vz # 0 and the matrix is p.s.d.
@ ¢ <0 = Q(z) <0Vz # 0 and the matrix is n.s.d.

@ c=0 = Q(z) =0Vz # 0 and the matrix is both p.s.d. and
n.s.d.
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B (b) The leading principal minors are:
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B (b) The leading principal minors are:

® |Li| =det(2) =2 > 0,
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B (b) The leading principal minors are:

® |Li| =det(2) =2 > 0,
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1

2
o |L2| =
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B (b) The leading principal minors are:

® |L| =det(2) =2>0,

Problem 3

=2-1=1>0,
1

2
@ Ly =

so the matrix is p.d. since both are strictly positive.
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S (c) The leading principal minors are

Problem 3



Problem 3

Solution

Class #1

S (c) The leading principal minors are
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°|L2|:'4

4
=18-16=2>0,
6
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S (c) The leading principal minors are

® |Li| =det(—3) = -3 <0,

Problem 3

°|L2|:'4

4
=18-16=2>0,
6

so the matrix is n.d. since |L;| and |L,| alternate in sign accordingly.
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5 6':24—25:—1<0,

which is the 2"d-order principal minor that obtains by deleting row and
column 1. Thus, the matrix is

Problem 3
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Solution

Closs 41 (d) Note that
EC400: SOFP ’4 5

5 6‘:24—25:—1<0,

which is the 2"d-order principal minor that obtains by deleting row and
column 1. Thus, the matrix is

Problem 3

@ not p.s.d. since there is at least one strictly negative principal
minor (= not p.d. since 3z # 0: Q(z) < 0),
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Solution

Closs 41 (d) Note that
EC400: SOFP ’4 5

5 6‘:24—25:—1<0,

which is the 2"d-order principal minor that obtains by deleting row and
column 1. Thus, the matrix is

Problem 3

@ not p.s.d. since there is at least one strictly negative principal
minor (= not p.d. since 3z # 0: Q(z) < 0),

@ not n.s.d. since at least one principal minor of even order is
strictly negative (= not n.d. since 3z £ 0: Q(z) > 0).



Class #1

EC400: SOI

Problem 3

P

Problem 3

Solution

(d) Note that
4 5
5 6

which is the 2"d-order principal minor that obtains by deleting row and
column 1. Thus, the matrix is

‘:24—25:—1<0,

@ not p.s.d. since there is at least one strictly negative principal
minor (= not p.d. since 3z # 0: Q(z) < 0),

@ not n.s.d. since at least one principal minor of even order is
strictly negative (= not n.d. since 3z £ 0: Q(z) > 0).

That is, the matrix is indefinite. O
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Consider the following quadratic form

Problem 4

Q(x) = az{ + bzy + 2abz 5.

For what values of the parameter values, « and b, is the quadratic
form Q(x) indefinite? Plot your answer in R
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SO  The symmetric representation of @)(x) is given by the matrix

a ab
A=
ab b
Problem 4

with principal minors
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SO  The symmetric representation of @)(x) is given by the matrix

a ab
A=
ab b
Problem 4

with principal minors

@ 1%t order: a,b.
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Solution

The symmetric representation of @ (x) is given by the matrix

a ab
A=
ab b
with principal minors

@ 1%t order: a,b.

@ 224 order: |A| = ab — (ab)? = ab(1 — ab).
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R Hence, Q(x) is
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Solution

R Hence, Q(x) is
EC400: SOFP Y p.s.d. When

a>0,b>0,ab(l—ab) >0 <= a>0,b>0,ab<1.
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Solution

S Hence, Q(x) is
e @ p.s.d. when

a>0,b>0,ab(l—ab) >0 <= a>0,b>0,ab<1.

Problem 4

@ n.s.d. when

a<0,b<0,ab(l—ab) >0 <= a<0,0<0,ab>1.
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Sk Hence, Q(x) is
EC400: SOFP Y p.s.d. When

a>0,b>0,ab(l—ab) >0 <= a>0,b>0,ab< 1.

Problem 4

@ n.s.d. when

a<0,b<0,ab(l—ab) >0 <= a<0,b0<0,ab>1.

@ indefinite when it is neither p.s.d. nor n.s.d., i.e., in every other
case:

sgn (a) #sgn(b)or |b] > |1/al.
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1
h A - ab—1
-.
1
indefinite ', indefinite
\“
Problem 4 ) 0 p.s.~d~ R T :
~-eee.__nsd. |o a
Q“
.
. .. A . ..
indefinite indefinite
1
i /
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Approximate e” at z = 0 with a Taylor polynomial of order three and
four. Then compute the values of these approximations at ~ = 0.2 and
at » = 1 and compare with the actual values.

Problem 5
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The 3'- and 4'"-order Taylor expansion of f(z) around z = a
evaluated at z = h are

Problem 5
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The 3'- and 4'"-order Taylor expansion of f(z) around z = a
evaluated at z = h are

" 3
Pylh | a) = f(a) + flaph + LDy L0
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The 3'- and 4'"-order Taylor expansion of f(z) around z = a
evaluated at z = h are

P3(h | a) = f(a) + f'(a)h + f"(a) B2 4+ f¥(a) 33

Problem 5 2' 3'
" 3] (4]
Pit o) = fla) + o+ e Ty o oy
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For f(z) = e, ©L9 — () Vn e N.  So,
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For f(z) = e, ©L9 — () Vn e N.  So,

ea

h3
3!

Ps(h| a) = e"+ e*h + %h%—

Problem 5
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For f(z) = e, ©L9 — () Vn e N.  So,

ea

3
3!h

Ps(h| a) = e"+ e*h + %h%—

Problem 5

_ La a e_aQ 6_113 6_(14
Pyh]a)=e"+e h—|—2!h +3!h +4!h
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For a = 0, these simplify to
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For a = 0, these simplify to

h?  h3

Problem 5
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For a = 0, these simplify to

h? K3
Py(h|0)=14+h+ —+ —
s(h]0) =1+ ht o+ 4
Problem 5
h?  h3  ht

P =1 — 4+ =+ =
+(h | 0) +h+2+6+24
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R Finally, plugging in the values of h, we get

h Ps(h]0) Py(h|0)  f(h)

0.2 1.2213 1.2214  1.221403
1 2.6 2.7083  2.718282
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Solution
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R Finally, plugging in the values of h, we get

h Ps(h]0) Py(h|0)  f(h)

0.2 1.2213 1.2214  1.221403
1 2.6 2.7083  2.718282

Problem 5

Takeaway: Aim for Taylor expansions of low order but close to the
approximation point. O
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For each of the following functions on R, determine whether they are
guasiconcave, quasiconvex, both, or neither:

Frosiem © (@) e”; (b) In(z); (c) 2 —=z
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(@) e”is a strictly increasing function on R. Therefore, it is both
qguasiconcave and quasiconvex.
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Solution

Class 7 . . . . . e
‘ - (a) e” is a strictly increasing function on R. Therefore, it is both
Sl quasiconcave and quasiconvex.
—_— = e’ y
y=a
Problem 6
/
Co ={zeR:f(z)<a}|Ci ={z €R:f(z) > a}
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(b) By the same argument, In (z) is both quasiconcave and
guasiconvex.
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Problem 6

)1

P

Problem 6

Solution

(b) By the same argument, In (z) is both quasiconcave and
guasiconvex.
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(c) z* — z is neither quasiconcave nor quasiconvex since
Jda € R: Cf is not convex and Ja € R : C is not convex.
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Problem 6

Solution

(c) z* — z is neither quasiconcave nor quasiconvex since
Jda € R: Cf is not convex and Ja € R : C is not convex.

YA /
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Let f be a function defined on a convex set U in R™. In lecture, we
have shown that f is a quasiconcave function on U if and only if for all
x,y € Uandt € [0,1]

flx+ (1 —t)y) > min{f(x),f(y)}.

State the corresponding theorem for quasiconvex functions and prove
it.

Problem 7
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For the quasiconcave case, what does the statement

flix+ (1= t)y) =2 min{f(x),f(y)}
say?

Problem 7
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For the quasiconcave case, what does the statement
fltx+ (1= t)y) > min{f(x),f(y)}
say?

Problem 7 Consider the following concave (and thus quasiconcave) function on
R, where forany z,y € Rand ¢t € [0, 1] we define z = tz + (1 — t)y and

fe= () + (1= )f ().
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Problem 7

Problem 7 [Harder]

Solution

bl

fe)

A

E—
{0 =2z b=f(2),Vte[0,1]}
—f{a= b= Vi€ 01}

A

xT

f(y)=min {f(z),f(y)}

A 4
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e Now, consider a convex (and thus quasiconvex) function on R.
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- Now, consider a convex (and thus quasiconvex) function on R.
EC400: SOFP
A= .
—{I{Z:f(z,)b:f(z),we[ﬂ.l]}
w—{a=zb=fYte01]}
f(z)y=max{f(z).f(y)}

Problem 7 £ \ Y a

)
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The corresponding theorem for quasiconvex functions is

Problem 7
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The corresponding theorem for quasiconvex functions is

Let f be a function defined on a convex set U inR"™. Then, f is a
quasiconvex function on U if and only if for all x,y € U and t € [0, 1]

fltx+ (1= t)y) <max{f(x),f(y)}-

Problem 7
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FOI0EROTE . Proof.

Let U be a convex subset of R”.
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Problem 7 [Harder]

Solution

Class #1

EC400: SOFP PI’OOf

Let U be a convex subset of R”. Consider the statements

Problem 7
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Let U be a convex subset of R”. Consider the statements

@ A:“f: U — R is a quasiconvex function”

Problem 7
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Let U be a convex subset of R”. Consider the statements

@ A:“f: U — R is a quasiconvex function”

@ B:'Vx,ye UVtel0,1],f(tx,(1—t)y) <max{f(x),f(y)}"

Problem 7
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Let U be a convex subset of R”. Consider the statements

@ A:“f: U — R is a quasiconvex function”

@ B:'Vx,ye UVtel0,1],f(tx,(1—t)y) <max{f(x),f(y)}"

Problem 7

We want to prove “A < B”, which can be broken into “A — B”
and ‘B — A"
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Letf: U — R (where U C R" is a convex set) be a quasiconvex
function

Problem 7
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Letf: U — R (where U C R" is a convex set) be a quasiconvex
function, i.e.,

C, ={ze U:f(z) <k}isaconvexsetVk € R.

Problem 7
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Proof: A — B.

Letf: U — R (where U C R" is a convex set) be a quasiconvex
function, i.e.,

C, ={ze U:f(z) <k}isaconvexsetVk € R.

Problem 7 Take any X, y G U and |et k = Imax {f(x),f(y)}
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Proof: A — B.

Letf: U — R (where U C R" is a convex set) be a quasiconvex
function, i.e.,

C, ={ze U:f(z) <k}isaconvexsetVk € R.

Problem 7 Take any x,y € U and let £ = max {f(x),f(y)} = x,y € C; .
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Solution
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Proof: A — B.

Letf: U — R (where U C R" is a convex set) be a quasiconvex
function, i.e.,

C, ={ze U:f(z) <k}isaconvexsetVk € R.
Problem 7 Take any x,y € U and let £ = max {f(x),f(y)} = x,y € C; .

f(-) g-convex = C, convex
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Proof: A — B.

Letf: U — R (where U C R" is a convex set) be a quasiconvex
function, i.e.,

C, ={ze U:f(z) <k}isaconvexsetVk € R.
Problem 7 Take any x,y € U and let £ = max {f(x),f(y)} = x,y € C; .

f(-) g-convex = C, convex — tx+ (1—t)y € C, Vt € [0,1].
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Proof: A — B.

Thus, by definition of C,,

Problem 7
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Proof: A — B.

Thus, by definition of C,, Vit € [0,1],

fltx+ (1 =1t)y) <k =max {f(x),f(y)}.

Problem 7
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Proof: A — B.

Thus, by definition of C,, Vit € [0,1],

fltx+ (1 =1t)y) <k =max {f(x),f(y)}.

Problem 7

This establishes that “A =— B”.
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Let U C R" be aconvex setand f : U — R be a function.

Problem 7
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EC400: SOFP PrOOfZ B — A.

Let U C R" be aconvex setand f : U — R be a function.

Suppose that Vx,y € U,Vt € [0,1],

flix+ (1= t)y) < max{f(x),f(y)}

Problem 7
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EC400: SOFP PrOOfZ B — A.

Let U C R" be aconvex setand f : U — R be a function.

Suppose that Vx,y € U,Vt € [0,1],

flix+ (1= t)y) < max{f(x),f(y)}

Problem 7

Let £ € Randtake x,y € C,
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EC400: SOFP PrOOfZ B — A.

Let U C R" be aconvex setand f : U — R be a function.

Suppose that Vx,y € U,Vt € [0,1],

flix+ (1= t)y) < max{f(x),f(y)}

Problem 7

Let k e Randtake x,y € C;, = max{f(x),f(y)} < k.
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EC400: SOFP PI’OOf B — A

Thus, by our assumption, V¢ € [0, 1],

flix+ (1 =1t)y) < max{f(x),f(y)} < k.

Problem 7
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EC400: SOFP PI’OOf B — A

Thus, by our assumption, V¢ € [0, 1],

flix+ (1 =1t)y) < max{f(x),f(y)} < k.

= tx+(1—-t)ye C ,Vte|0,1]

Problem 7
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Thus, by our assumption, V¢ € [0, 1],

flix+ (1 =1t)y) < max{f(x),f(y)} < k.

= tx+(1—-t)ye C, ,Vte0,1] < C, convex.

Problem 7
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Solution
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EC400: SOFP PI’OOf: B — A.

Thus, by our assumption, V¢ € [0, 1],

flix+ (1 =1t)y) < max{f(x),f(y)} < k.

= tx+(1—-t)ye C, ,Vte0,1] < C, convex.

Problem 7

Since k € R is arbitrary, C, isconvex Vi € R <= f(-) g-convex,
establishing that ‘B — A”. O]
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Prove that a weakly increasing transformation (¢ : R — R such that
g’ > 0) of a quasiconcave function is quasi-concave.

Problem 8



Problem 8

Solution

Class #
: Proof.

- Let f: U C R" — R be a g-concave function and consider any weakly
increasing transformation ¢ : R — Randthemap h = g o f.

Problem 8
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Solution
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Proof.

Let f: U C R" — R be a g-concave function and consider any weakly
increasing transformation ¢ : R — Randthemap h = g o f.
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Let f: U C R" — R be a g-concave function and consider any weakly
increasing transformation ¢ : R — Randthemap h = g o f.

EC400: SOFP

f(-) g-concave — Vx,y € U,Vt e [0,1],
fix+ (1 —=t)y) > min{f(x),f(y)}.
Problem 5 9() =20 = Vx,ye UVt e0,1],
g(f(tx+ (1= t)y)) = g(min {f(x), f(y)}) = min {g(f(x)). 9(f(¥)) }

i.e., h(tx+ (1 —¢t)y) > min {h(x), h(y)}, so h(-) g-concave. O
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A commonly used production or utility function on R? is f(z,y) = zy.
Check whether it is concave or convex using its Hessian. Then, check
whether it is quasiconcave.

Problem 9



Problem 9

Solution

Class #1

The Hessian is

EC400: SOFP

2 = -
D f(x7 y) T\ 3 f(zy)  9Pf(z,y)
Oyoz dy?

%f(z,y)  0%f(z,y)
8z2y 8zayy (O 1)
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The Hessian is

BQJ;(HEZ,y) 325‘((9;7?;) 01
= (522 %) (0

Pf(zy)  8f(z,y)
Oyozx Oy?

Since the second order leading principal minor is
det (D?f(z,y)) =0—1=-1<0,

the Hessian is indefinite and the function is neither concave nor
convex.
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To check quasiconcavity, consider the increasing transformation

g9(z) = In(z).
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To check quasiconcavity, consider the increasing transformation
g(z) =1In(z). Note that

Wz, y) = g(f(z,y)) =In(z) +In(y),

which is a sum of concave functions and thus concave — h(z, y)
quasiconcave.
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Finally, since ¢~'(z) = e” is also a strictly increasing transformation,
the inverse mapping

flz,y) =g (M(z,y))
must be quasiconcave on Rj_,

Problem 9



Problem 10



Problem 10 [Harder]

Class #1

EC400: SOFP

Show that any continuously differentiable function f : R — R,
satisfying
0f (x)

oz

z <0,

must be quasiconcave.
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The condition

implies that
Q0 1r<0 = %(f) >0
(f(-) weakly increasing to the left of z = 0)

Q71 >0 = %(;) <0
Problem 10 (f(-) weakly decreasing to the right of z = 0)
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Proof.
Therefore, the function must have a maximum at z = 0, i.e.
r=0— HD _,
0z

We need to show that all upper-contour sets are convex (holds trivially
for empty upper-contour sets).
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Take k£ < f(0) and let

{min {z <0:f(x)=Fk} iffinite
Ly =

—00 otherwise

By continuity of f(-) and definition of z,, Vz <0,

f(z) >k <= x>z,
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Similarly, let
max {z >0: f(z) =k} if finite
Ty = _
+00 otherwise

By continuity of f(-) and definition of 7, Yz > 0,

Problem 10 f(fﬂ) >k — z <7y
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Thus, Vi < f(0),
G ={z eR: f(z) = k} = [z}, T,
which is an interval and thus convex —- f(-) quasiconcave. O
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Appendix

<< 1—ab>0
— ab <1

1
— b>—,
a
where the last equivalence follows by multiplying by 1/a < 0 on both

sides of the inequality, which flips the sign.
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It can be shown that f(-) is quasiconvex on R? by a similar argument.
Therefore, f(-) is neither quasiconvex nor quasiconcave on R?, but it is
quasiconcave on R? and quasiconvex on R



