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Problem 1

Show that the general quadratic form

a11x
2
1 + a12x1x2 + a22x

2
2

can be written as

󰀃
x1 x2

󰀄
󰀣
a11 a12

0 a22

󰀤󰀣
x1

x2

󰀤

and find its unique symmetric representation.
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Problem 1
Solution

Just multiply out:

󰀃
x1 x2

󰀄
󰀣
a11 a12

0 a22

󰀤󰀕
x1
x2

󰀖
=

󰀃
a11x1 + 0 x2 a12x1 + a22x2

󰀄
󰀣
x1

x2

󰀤
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Solution

Just multiply out:

󰀃
x1 x2

󰀄
󰀣
a11 a12

0 a22

󰀤󰀕
x1
x2

󰀖
=

󰀃
a11x1 + 0 x2 a12x1 + a22x2

󰀄
󰀣
x1

x2

󰀤

= a11x
2
1 + 0 x1x2 + a12x1x2 + a22x

2
2
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Problem 1
Solution

Just multiply out:

󰀃
x1 x2

󰀄
󰀣
a11 a12

0 a22

󰀤󰀕
x1
x2

󰀖
=

󰀃
a11x1 + 0 x2 a12x1 + a22x2

󰀄
󰀣
x1

x2

󰀤

= a11x
2
1 + 0 x1x2 + a12x1x2 + a22x

2
2

= a11x
2
1 + a12x1x2 + a22x

2
2 .
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Problem 1
Solution

The symmetric representation is

󰀃
x1 x2

󰀄
󰀣

a11 a12/2

a12/2 a22

󰀤󰀣
x1

x2

󰀤
.



Problem 2



Class #1

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

4/50

Problem 2

List all the principal minors of a general (3× 3) matrix and denote
which are the three leading principal minors.
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Problem 2
Solution

Let

A =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄

be a generic 3× 3 matrix.
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Problem 2
Solution

The k th order principal minors of A are the determinants of each
k th-order principal submatrix obtained by deleting (3− k ) columns and
the corresponding rows of A.
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Problem 2
Solution

The k th order principal minors of A are the determinants of each
k th-order principal submatrix obtained by deleting (3− k ) columns and
the corresponding rows of A.

3rd order:

A3 = A

since we delete 3− 3 = 0 columns and rows. Therefore, the only
3rd-order principal minor of A is

|A3| = |A| .
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Problem 2
Solution

2nd order: Delete 3− 2 = 1 column and row.
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Problem 2
Solution

2nd order: Delete 3− 2 = 1 column and row.
Delete 1st column and row:

A1
2 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏A1

2

󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏
a22 a23

a32 a33

󰀏󰀏󰀏󰀏󰀏
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Problem 2
Solution

2nd order: Delete 3− 2 = 1 column and row.
Delete 1st column and row:

A1
2 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏A1

2

󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏
a22 a23

a32 a33

󰀏󰀏󰀏󰀏󰀏

Delete 2nd column and row:

A2
2 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏A2

2

󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏
a11 a13

a31 a33

󰀏󰀏󰀏󰀏󰀏
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Problem 2
Solution

Delete 3rd column and row:

A3
2 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏A3

2

󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏
a11 a12

a21 a22

󰀏󰀏󰀏󰀏󰀏
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Problem 2
Solution

Delete 3rd column and row:

A3
2 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏A3

2

󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏
a11 a12

a21 a22

󰀏󰀏󰀏󰀏󰀏

1st order: Delete 3− 1 = 2 columns and rows.
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Problem 2
Solution

Delete 3rd column and row:

A3
2 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏A3

2

󰀏󰀏 =

󰀏󰀏󰀏󰀏󰀏
a11 a12

a21 a22

󰀏󰀏󰀏󰀏󰀏

1st order: Delete 3− 1 = 2 columns and rows.
Delete 1st and 2nd columns and rows:

A1,2
1 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏󰀏A1,2

1

󰀏󰀏󰀏 = a33
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Problem 2
Solution

Delete 1st and 3rd columns and rows:

A1,3
1 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏󰀏A1,3

1

󰀏󰀏󰀏 = a22
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Solution

Delete 1st and 3rd columns and rows:

A1,3
1 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏󰀏A1,3

1

󰀏󰀏󰀏 = a22

Delete 2nd and 3rd columns and rows:

A2,3
1 =

󰀳

󰁅󰁅󰁃

a11 a12 a13

a21 a22 a23

a31 a32 a33

󰀴

󰁆󰁆󰁄 =⇒
󰀏󰀏󰀏A2,3

1

󰀏󰀏󰀏 = a11
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Problem 2
Solution

The k th order leading principal minors of A are the determinants of
the k th-order leading principal submatrices, obtained by deleting the
last (3− k ) columns and rows of A.
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Problem 2
Solution

The k th order leading principal minors of A are the determinants of
the k th-order leading principal submatrices, obtained by deleting the
last (3− k ) columns and rows of A.

=⇒ The leading principal submatrices contain the first k elements of
the diagonal. Thus,
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Problem 2
Solution

The k th order leading principal minors of A are the determinants of
the k th-order leading principal submatrices, obtained by deleting the
last (3− k ) columns and rows of A.

=⇒ The leading principal submatrices contain the first k elements of
the diagonal. Thus,

|L1| = a11,
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Problem 2
Solution

The k th order leading principal minors of A are the determinants of
the k th-order leading principal submatrices, obtained by deleting the
last (3− k ) columns and rows of A.

=⇒ The leading principal submatrices contain the first k elements of
the diagonal. Thus,

|L1| = a11,

|L2| =

󰀏󰀏󰀏󰀏󰀏
a11 a12

a21 a22

󰀏󰀏󰀏󰀏󰀏, and
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Problem 2
Solution

The k th order leading principal minors of A are the determinants of
the k th-order leading principal submatrices, obtained by deleting the
last (3− k ) columns and rows of A.

=⇒ The leading principal submatrices contain the first k elements of
the diagonal. Thus,

|L1| = a11,

|L2| =

󰀏󰀏󰀏󰀏󰀏
a11 a12

a21 a22

󰀏󰀏󰀏󰀏󰀏, and

|L3| = |A|.
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Problem 3

Determine the definiteness of the following symmetric matrices:

(a)

󰀣
0 0

0 c

󰀤
; (b)

󰀣
2 −1

−1 1

󰀤
; (c)

󰀣
−3 4

4 −6

󰀤
; (d)

󰀳

󰁅󰁅󰁃

1 2 0

2 4 5

0 5 6

󰀴

󰁆󰁆󰁄.
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Problem 3
Solution

(a) Q(x ) =
󰀃
x1 x2

󰀄
󰀣
0 0

0 c

󰀤󰀣
x1

x2

󰀤
= c x 2

2 , so
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Solution

(a) Q(x ) =
󰀃
x1 x2

󰀄
󰀣
0 0

0 c

󰀤󰀣
x1

x2

󰀤
= c x 2

2 , so

c > 0 =⇒ Q(x ) ≥ 0 ∀x ∕= 0 and the matrix is p.s.d.
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Solution

(a) Q(x ) =
󰀃
x1 x2

󰀄
󰀣
0 0

0 c

󰀤󰀣
x1

x2

󰀤
= c x 2

2 , so

c > 0 =⇒ Q(x ) ≥ 0 ∀x ∕= 0 and the matrix is p.s.d.

c < 0 =⇒ Q(x ) ≤ 0 ∀x ∕= 0 and the matrix is n.s.d.
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Problem 3
Solution

(a) Q(x ) =
󰀃
x1 x2

󰀄
󰀣
0 0

0 c

󰀤󰀣
x1

x2

󰀤
= c x 2

2 , so

c > 0 =⇒ Q(x ) ≥ 0 ∀x ∕= 0 and the matrix is p.s.d.

c < 0 =⇒ Q(x ) ≤ 0 ∀x ∕= 0 and the matrix is n.s.d.

c = 0 =⇒ Q(x ) = 0 ∀x ∕= 0 and the matrix is both p.s.d. and
n.s.d.
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Problem 3
Solution

(b) The leading principal minors are:
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(b) The leading principal minors are:

|L1| = det (2) = 2 > 0,
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Solution

(b) The leading principal minors are:

|L1| = det (2) = 2 > 0,

|L2| =

󰀏󰀏󰀏󰀏󰀏
2 −1

−1 1

󰀏󰀏󰀏󰀏󰀏 = 2− 1 = 1 > 0,
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Solution

(b) The leading principal minors are:

|L1| = det (2) = 2 > 0,

|L2| =

󰀏󰀏󰀏󰀏󰀏
2 −1

−1 1

󰀏󰀏󰀏󰀏󰀏 = 2− 1 = 1 > 0,

so the matrix is p.d. since both are strictly positive.
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(c) The leading principal minors are
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(c) The leading principal minors are

|L1| = det (−3) = −3 < 0,
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Solution

(c) The leading principal minors are

|L1| = det (−3) = −3 < 0,

|L2| =

󰀏󰀏󰀏󰀏󰀏
−3 4

4 −6

󰀏󰀏󰀏󰀏󰀏 = 18− 16 = 2 > 0,
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Solution

(c) The leading principal minors are

|L1| = det (−3) = −3 < 0,

|L2| =

󰀏󰀏󰀏󰀏󰀏
−3 4

4 −6

󰀏󰀏󰀏󰀏󰀏 = 18− 16 = 2 > 0,

so the matrix is n.d. since |L1| and |L2| alternate in sign accordingly.
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Solution

(d) Note that 󰀏󰀏󰀏󰀏
4 5
5 6

󰀏󰀏󰀏󰀏 = 24− 25 = −1 < 0,

which is the 2nd-order principal minor that obtains by deleting row and
column 1. Thus, the matrix is
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Solution

(d) Note that 󰀏󰀏󰀏󰀏
4 5
5 6

󰀏󰀏󰀏󰀏 = 24− 25 = −1 < 0,

which is the 2nd-order principal minor that obtains by deleting row and
column 1. Thus, the matrix is

not p.s.d. since there is at least one strictly negative principal
minor ( =⇒ not p.d. since ∃x ∕= 0 : Q(x ) ≤ 0),
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Solution

(d) Note that 󰀏󰀏󰀏󰀏
4 5
5 6

󰀏󰀏󰀏󰀏 = 24− 25 = −1 < 0,

which is the 2nd-order principal minor that obtains by deleting row and
column 1. Thus, the matrix is

not p.s.d. since there is at least one strictly negative principal
minor ( =⇒ not p.d. since ∃x ∕= 0 : Q(x ) ≤ 0),

not n.s.d. since at least one principal minor of even order is
strictly negative ( =⇒ not n.d. since ∃x ∕= 0 : Q(x ) ≥ 0).
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Solution

(d) Note that 󰀏󰀏󰀏󰀏
4 5
5 6

󰀏󰀏󰀏󰀏 = 24− 25 = −1 < 0,

which is the 2nd-order principal minor that obtains by deleting row and
column 1. Thus, the matrix is

not p.s.d. since there is at least one strictly negative principal
minor ( =⇒ not p.d. since ∃x ∕= 0 : Q(x ) ≤ 0),

not n.s.d. since at least one principal minor of even order is
strictly negative ( =⇒ not n.d. since ∃x ∕= 0 : Q(x ) ≥ 0).

That is, the matrix is indefinite.
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Problem 4 [Harder]

Consider the following quadratic form

Q(x) = ax 2
1 + bx 2

2 + 2abx1x2.

For what values of the parameter values, a and b, is the quadratic
form Q(x) indefinite? Plot your answer in R2.
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Problem 4 [Harder]
Solution

The symmetric representation of Q(x) is given by the matrix

A =

󰀣
a ab

ab b

󰀤

with principal minors
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Problem 4 [Harder]
Solution

The symmetric representation of Q(x) is given by the matrix

A =

󰀣
a ab

ab b

󰀤

with principal minors

1st order: a,b.
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Problem 4 [Harder]
Solution

The symmetric representation of Q(x) is given by the matrix

A =

󰀣
a ab

ab b

󰀤

with principal minors

1st order: a,b.

2nd order: |A| = ab − (ab)2 = ab(1− ab).
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Solution

Hence, Q(x) is
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Problem 4 [Harder]
Solution

Hence, Q(x) is
p.s.d. when

a ≥ 0, b ≥ 0, ab(1− ab) ≥ 0 ⇐⇒ a ≥ 0, b ≥ 0, ab ≤ 1.
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Problem 4 [Harder]
Solution

Hence, Q(x) is
p.s.d. when

a ≥ 0, b ≥ 0, ab(1− ab) ≥ 0 ⇐⇒ a ≥ 0, b ≥ 0, ab ≤ 1.

n.s.d. when

a ≤ 0, b ≤ 0, ab(1− ab) ≥ 0 ⇐⇒ a ≤ 0, b ≤ 0, ab ≥ 1.
details
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Problem 4 [Harder]
Solution

Hence, Q(x) is
p.s.d. when

a ≥ 0, b ≥ 0, ab(1− ab) ≥ 0 ⇐⇒ a ≥ 0, b ≥ 0, ab ≤ 1.

n.s.d. when

a ≤ 0, b ≤ 0, ab(1− ab) ≥ 0 ⇐⇒ a ≤ 0, b ≤ 0, ab ≥ 1.
details

indefinite when it is neither p.s.d. nor n.s.d., i.e., in every other
case:

sgn (a) ∕= sgn (b) or |b| > |1/a| .
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Problem 4 [Harder]
Solution

n.s.d.
p.s.d.

indefinite

indefinite

indefinite

indefinite

0

0

a

b ab = 1
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Problem 5

Approximate ex at x = 0 with a Taylor polynomial of order three and
four. Then compute the values of these approximations at h = 0.2 and
at h = 1 and compare with the actual values.
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Problem 5
Solution

The 3rd- and 4th-order Taylor expansion of f (x ) around x = a
evaluated at x = h are
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Problem 5
Solution

The 3rd- and 4th-order Taylor expansion of f (x ) around x = a
evaluated at x = h are

P3(h | a) = f (a) + f ′(a)h +
f ′′(a)

2!
h2 +

f [3](a)

3!
h3
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Problem 5
Solution

The 3rd- and 4th-order Taylor expansion of f (x ) around x = a
evaluated at x = h are

P3(h | a) = f (a) + f ′(a)h +
f ′′(a)

2!
h2 +

f [3](a)

3!
h3

P4(h | a) = f (a) + f ′(a)h +
f ′′(a)

2!
h2 +

f [3](a)

3!
h3 +

f [4](a)

4!
h4
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Problem 5
Solution

For f (x ) = ex , dn f (x)
d xn = f (x ) ∀n ∈ N.
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Solution

For f (x ) = ex , dn f (x)
d xn = f (x ) ∀n ∈ N. So,
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Problem 5
Solution

For f (x ) = ex , dn f (x)
d xn = f (x ) ∀n ∈ N. So,

P3(h | a) = ea + eah +
ea

2!
h2 +

ea

3!
h3



Class #1

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

22/50

Problem 5
Solution

For f (x ) = ex , dn f (x)
d xn = f (x ) ∀n ∈ N. So,

P3(h | a) = ea + eah +
ea

2!
h2 +

ea

3!
h3

P4(h | a) = ea + eah +
ea

2!
h2 +

ea

3!
h3 +

ea

4!
h4
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Solution

For a = 0, these simplify to



Class #1

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

23/50

Problem 5
Solution

For a = 0, these simplify to

P3(h | 0) = 1 + h +
h2

2
+

h3

6
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Problem 5
Solution

For a = 0, these simplify to

P3(h | 0) = 1 + h +
h2

2
+

h3

6

P4(h | 0) = 1 + h +
h2

2
+

h3

6
+

h4

24
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Solution

Finally, plugging in the values of h, we get
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Problem 5
Solution

Finally, plugging in the values of h, we get

h P3(h | 0) P4(h | 0) f (h)

0.2 1.2213 1.2214 1.221403

1 2.6 2.7083 2.718282
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Problem 5
Solution

Finally, plugging in the values of h, we get

h P3(h | 0) P4(h | 0) f (h)

0.2 1.2213 1.2214 1.221403

1 2.6 2.7083 2.718282

Takeaway: Aim for Taylor expansions of low order but close to the
approximation point.
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Problem 6

For each of the following functions on R, determine whether they are
quasiconcave, quasiconvex, both, or neither:

(a) ex ; (b) ln (x ); (c) x 3 − x
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Problem 6
Solution

(a) ex is a strictly increasing function on R. Therefore, it is both
quasiconcave and quasiconvex.
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Problem 6
Solution

(a) ex is a strictly increasing function on R. Therefore, it is both
quasiconcave and quasiconvex.

0

a

C+
a ≡ {x ∈ R : f (x) ≥ a}C−

a ≡ {x ∈ R : f (x) ≤ a}

x

y
y = ex

y = a
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Problem 6
Solution

(b) By the same argument, ln (x ) is both quasiconcave and
quasiconvex.
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Solution

(b) By the same argument, ln (x ) is both quasiconcave and
quasiconvex.

0

a

C
−
a

C
+
a

x

y

y = ln (x )
y = a
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Solution

(c) x 3 − x is neither quasiconcave nor quasiconvex since
∃a ∈ R : C+

a is not convex and ∃a ∈ R : C−
a is not convex.
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Problem 6
Solution

(c) x 3 − x is neither quasiconcave nor quasiconvex since
∃a ∈ R : C+

a is not convex and ∃a ∈ R : C−
a is not convex.

a

⊂ C
−
a ⊂ C

−
a

⊂ C
+
a ⊂ C

+
a

x

y

y = x 3 − x
y = a
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Problem 7 [Harder]

Let f be a function defined on a convex set U in Rn . In lecture, we
have shown that f is a quasiconcave function on U if and only if for all
x,y ∈ U and t ∈ [0, 1]

f (tx+ (1− t)y) ≥ min {f (x), f (y)}.

State the corresponding theorem for quasiconvex functions and prove
it.
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Solution

For the quasiconcave case, what does the statement

f (tx+ (1− t)y) ≥ min {f (x), f (y)}

say?
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Problem 7 [Harder]
Solution

For the quasiconcave case, what does the statement

f (tx+ (1− t)y) ≥ min {f (x), f (y)}

say?

Consider the following concave (and thus quasiconcave) function on
R, where for any x , y ∈ R and t ∈ [0, 1] we define z ≡ tx + (1− t)y and
fz ≡ tf (x ) + (1− t)f (y).
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Problem 7 [Harder]
Solution

x y

f (x)

f (y)=min {f (x),f (y)}

a

b b = f (a)
{a = z , b = f (z ), ∀ t ∈ [0, 1]}
{a = z , b = fz , ∀ t ∈ [0, 1]}
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Solution

Now, consider a convex (and thus quasiconvex) function on R.
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Problem 7 [Harder]
Solution

Now, consider a convex (and thus quasiconvex) function on R.

x y

f (x)=max {f (x),f (y)}

f (y)

a

bb = f (a)
{a = z , b = f (z ), ∀ t ∈ [0, 1]}
{a = z , b = fz , ∀ t ∈ [0, 1]}
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Solution

The corresponding theorem for quasiconvex functions is
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Problem 7 [Harder]
Solution

The corresponding theorem for quasiconvex functions is

Theorem

Let f be a function defined on a convex set U in Rn . Then, f is a
quasiconvex function on U if and only if for all x,y ∈ U and t ∈ [0, 1]

f (tx+ (1− t)y) ≤ max {f (x), f (y)}.
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Solution

Proof.

Let U be a convex subset of Rn .
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Proof.

Let U be a convex subset of Rn . Consider the statements
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Solution

Proof.

Let U be a convex subset of Rn . Consider the statements

A: “f : U → R is a quasiconvex function”



Class #1

EC400: SOFP

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

34/50

Problem 7 [Harder]
Solution

Proof.

Let U be a convex subset of Rn . Consider the statements

A: “f : U → R is a quasiconvex function”

B: “∀x,y ∈ U , ∀ t ∈ [0, 1], f (tx, (1− t)y) ≤ max {f (x), f (y)}”
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Problem 7 [Harder]
Solution

Proof.

Let U be a convex subset of Rn . Consider the statements

A: “f : U → R is a quasiconvex function”

B: “∀x,y ∈ U , ∀ t ∈ [0, 1], f (tx, (1− t)y) ≤ max {f (x), f (y)}”

We want to prove “A ⇐⇒ B”, which can be broken into “A =⇒ B”
and “B =⇒ A”.
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Problem 7 [Harder]
Solution

Proof: A =⇒ B.

Let f : U → R (where U ⊆ Rn is a convex set) be a quasiconvex
function
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Problem 7 [Harder]
Solution

Proof: A =⇒ B.

Let f : U → R (where U ⊆ Rn is a convex set) be a quasiconvex
function, i.e.,

C−
k ≡ {z ∈ U : f (z) ≤ k} is a convex set ∀k ∈ R.
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Problem 7 [Harder]
Solution

Proof: A =⇒ B.

Let f : U → R (where U ⊆ Rn is a convex set) be a quasiconvex
function, i.e.,

C−
k ≡ {z ∈ U : f (z) ≤ k} is a convex set ∀k ∈ R.

Take any x,y ∈ U and let k = max {f (x), f (y)}
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Problem 7 [Harder]
Solution

Proof: A =⇒ B.

Let f : U → R (where U ⊆ Rn is a convex set) be a quasiconvex
function, i.e.,

C−
k ≡ {z ∈ U : f (z) ≤ k} is a convex set ∀k ∈ R.

Take any x,y ∈ U and let k = max {f (x), f (y)} =⇒ x,y ∈ C−
k .
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Problem 7 [Harder]
Solution

Proof: A =⇒ B.

Let f : U → R (where U ⊆ Rn is a convex set) be a quasiconvex
function, i.e.,

C−
k ≡ {z ∈ U : f (z) ≤ k} is a convex set ∀k ∈ R.

Take any x,y ∈ U and let k = max {f (x), f (y)} =⇒ x,y ∈ C−
k .

f (·) q-convex =⇒ C−
k convex
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Problem 7 [Harder]
Solution

Proof: A =⇒ B.

Let f : U → R (where U ⊆ Rn is a convex set) be a quasiconvex
function, i.e.,

C−
k ≡ {z ∈ U : f (z) ≤ k} is a convex set ∀k ∈ R.

Take any x,y ∈ U and let k = max {f (x), f (y)} =⇒ x,y ∈ C−
k .

f (·) q-convex =⇒ C−
k convex =⇒ tx+ (1− t)y ∈ C−

k ∀ t ∈ [0, 1].
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Solution

Proof: A =⇒ B.

Thus, by definition of C−
k ,
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Problem 7 [Harder]
Solution

Proof: A =⇒ B.

Thus, by definition of C−
k , ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≤ k = max {f (x), f (y)}.
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Problem 7 [Harder]
Solution

Proof: A =⇒ B.

Thus, by definition of C−
k , ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≤ k = max {f (x), f (y)}.

This establishes that “A =⇒ B”.
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Problem 7 [Harder]
Solution

Proof: B =⇒ A.

Let U ⊆ Rn be a convex set and f : U → R be a function.
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Problem 7 [Harder]
Solution

Proof: B =⇒ A.

Let U ⊆ Rn be a convex set and f : U → R be a function.

Suppose that ∀x,y ∈ U , ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≤ max {f (x), f (y)}.
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Problem 7 [Harder]
Solution

Proof: B =⇒ A.

Let U ⊆ Rn be a convex set and f : U → R be a function.

Suppose that ∀x,y ∈ U , ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≤ max {f (x), f (y)}.

Let k ∈ R and take x,y ∈ C−
k
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Problem 7 [Harder]
Solution

Proof: B =⇒ A.

Let U ⊆ Rn be a convex set and f : U → R be a function.

Suppose that ∀x,y ∈ U , ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≤ max {f (x), f (y)}.

Let k ∈ R and take x,y ∈ C−
k =⇒ max {f (x), f (y)} ≤ k .
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Solution

Proof: B =⇒ A.

Thus, by our assumption, ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≤ max {f (x), f (y)} ≤ k .
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Solution

Proof: B =⇒ A.

Thus, by our assumption, ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≤ max {f (x), f (y)} ≤ k .

=⇒ tx+ (1− t)y ∈ C−
k , ∀ t ∈ [0, 1]
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Solution

Proof: B =⇒ A.

Thus, by our assumption, ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≤ max {f (x), f (y)} ≤ k .

=⇒ tx+ (1− t)y ∈ C−
k , ∀ t ∈ [0, 1] ⇐⇒ C−

k convex.
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Solution

Proof: B =⇒ A.

Thus, by our assumption, ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≤ max {f (x), f (y)} ≤ k .

=⇒ tx+ (1− t)y ∈ C−
k , ∀ t ∈ [0, 1] ⇐⇒ C−

k convex.

Since k ∈ R is arbitrary, C−
k is convex ∀ k ∈ R ⇐⇒ f (·) q-convex,

establishing that “B =⇒ A”.
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Problem 8

Prove that a weakly increasing transformation (g : R → R such that
g ′ ≥ 0) of a quasiconcave function is quasi-concave.
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Problem 8
Solution

Proof.

Let f : U ⊆ Rn → R be a q-concave function and consider any weakly
increasing transformation g : R → R and the map h = g ◦ f .
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Problem 8
Solution

Proof.

Let f : U ⊆ Rn → R be a q-concave function and consider any weakly
increasing transformation g : R → R and the map h = g ◦ f .

f (·) q-concave =⇒ ∀x,y ∈ U , ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≥ min {f (x), f (y)}.
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Solution

Proof.

Let f : U ⊆ Rn → R be a q-concave function and consider any weakly
increasing transformation g : R → R and the map h = g ◦ f .

f (·) q-concave =⇒ ∀x,y ∈ U , ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≥ min {f (x), f (y)}.

g ′(·) ≥ 0 =⇒ ∀x,y ∈ U , ∀ t ∈ [0, 1],

g
󰀃
f (tx+ (1− t)y)

󰀄
≥ g

󰀃
min {f (x), f (y)}

󰀄
= min

󰀋
g
󰀃
f (x)

󰀄
, g
󰀃
f (y)

󰀄󰀌
,
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Problem 8
Solution

Proof.

Let f : U ⊆ Rn → R be a q-concave function and consider any weakly
increasing transformation g : R → R and the map h = g ◦ f .

f (·) q-concave =⇒ ∀x,y ∈ U , ∀ t ∈ [0, 1],

f (tx+ (1− t)y) ≥ min {f (x), f (y)}.

g ′(·) ≥ 0 =⇒ ∀x,y ∈ U , ∀ t ∈ [0, 1],

g
󰀃
f (tx+ (1− t)y)

󰀄
≥ g

󰀃
min {f (x), f (y)}

󰀄
= min

󰀋
g
󰀃
f (x)

󰀄
, g
󰀃
f (y)

󰀄󰀌
,

i.e., h(tx+ (1− t)y) ≥ min {h(x), h(y)}, so h(·) q-concave.
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Problem 9

A commonly used production or utility function on R2
+ is f (x , y) = xy .

Check whether it is concave or convex using its Hessian. Then, check
whether it is quasiconcave.
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Problem 9
Solution

The Hessian is

D2f (x , y) ≡

󰀳

󰁃
∂2f (x ,y)

∂x2

∂2f (x ,y)
∂x∂y

∂2f (x ,y)
∂y∂x

∂2f (x ,y)
∂y2

󰀴

󰁄 =

󰀣
0 1

1 0

󰀤
.
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Problem 9
Solution

The Hessian is

D2f (x , y) ≡

󰀳

󰁃
∂2f (x ,y)

∂x2

∂2f (x ,y)
∂x∂y

∂2f (x ,y)
∂y∂x

∂2f (x ,y)
∂y2

󰀴

󰁄 =

󰀣
0 1

1 0

󰀤
.

Since the second order leading principal minor is

det
󰀃
D2f (x , y)

󰀄
= 0− 1 = −1 < 0,

the Hessian is indefinite and the function is neither concave nor
convex.
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Problem 9
Solution

To check quasiconcavity, consider the increasing transformation
g(x ) = ln (x ).
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Problem 9
Solution

To check quasiconcavity, consider the increasing transformation
g(x ) = ln (x ). Note that

h(x , y) ≡ g
󰀃
f (x , y)

󰀄
= ln (x ) + ln (y),

which is a sum of concave functions and thus concave =⇒ h(x , y)
quasiconcave.
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Problem 9
Solution

Finally, since g−1(x ) = ex is also a strictly increasing transformation,
the inverse mapping

f (x , y) = g−1
󰀃
h(x , y)

󰀄

must be quasiconcave on R2
+.

note
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Problem 10 [Harder]

Show that any continuously differentiable function f : R → R,
satisfying

x
∂f (x )

∂x
≤ 0,

must be quasiconcave.
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Solution

Proof.

The condition
x
∂f (x )

∂x
≤ 0

implies that
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Problem 10 [Harder]
Solution

Proof.

The condition
x
∂f (x )

∂x
≤ 0

implies that

x < 0 =⇒ ∂f (x)
∂x

≥ 0
(f (·) weakly increasing to the left of x = 0)
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Problem 10 [Harder]
Solution

Proof.

The condition
x
∂f (x )

∂x
≤ 0

implies that

x < 0 =⇒ ∂f (x)
∂x

≥ 0
(f (·) weakly increasing to the left of x = 0)

x > 0 =⇒ ∂f (x)
∂x

≤ 0
(f (·) weakly decreasing to the right of x = 0)
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Problem 10 [Harder]
Solution

Proof.

Therefore, the function must have a maximum at x = 0, i.e.

x = 0 =⇒ ∂f (x )

∂x
= 0.

We need to show that all upper-contour sets are convex (holds trivially
for empty upper-contour sets).
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Problem 10 [Harder]
Solution

Proof.

Take k ≤ f (0) and let

x k =

󰀻
󰀿

󰀽

min {x ≤ 0 : f (x ) = k} if finite

−∞ otherwise
.

By continuity of f (·) and definition of x k , ∀x ≤ 0,

f (x ) ≥ k ⇐⇒ x ≥ x k .
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Problem 10 [Harder]
Solution

Proof.

Similarly, let

x k =

󰀻
󰀿

󰀽

max {x ≥ 0 : f (x ) = k} if finite

+∞ otherwise
.

By continuity of f (·) and definition of x k , ∀x ≥ 0,

f (x ) ≥ k ⇐⇒ x ≤ x k .
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Problem 10 [Harder]
Solution

Proof.

Thus, ∀k ≤ f (0),

C+
k ≡ {x ∈ R : f (x ) = k} = [x k , x k ],

which is an interval and thus convex =⇒ f (·) quasiconcave.
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Note that, given a ≤ 0 and b ≤ 0,

ab(1− ab) ≥ 0

⇐⇒ 1− ab ≥ 0

⇐⇒ ab ≤ 1

⇐⇒ b ≥ 1

a
,
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Appendix

Problem 4: Details

Note that, given a ≤ 0 and b ≤ 0,

ab(1− ab) ≥ 0

⇐⇒ 1− ab ≥ 0

⇐⇒ ab ≤ 1

⇐⇒ b ≥ 1

a
,

where the last equivalence follows by multiplying by 1/a ≤ 0 on both
sides of the inequality, which flips the sign.
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Problem 9: Note

It can be shown that f (·) is quasiconvex on R2
− by a similar argument.

Therefore, f (·) is neither quasiconvex nor quasiconcave on R2, but it is
quasiconcave on R2

+ and quasiconvex on R2
−

return


