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Consider the investment problem from Problem Set 1: given initial
value of capital K, a firm chooses investment path {1, };°, to
maximize profits

Problem 3

subject to the capital law of motion

Kt-i—l — (1 - 5)Kt + It'
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1. Write down the firm’s problem in a recursive form.
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@ From the law of motion of capital: I = K’ — (1 — §) K.
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@ From the law of motion of capital: I = K’ — (1 — §) K.

@ The Bellman equation is

vis) = mpe a0 40y SE 0Dy

K/
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2. Use the first-order and envelope conditions to derive the
optimality condition for K.
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14 +BVI(K') =0
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= —1—¢é+6V’(K’) =0
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—1- == 4 BV(K) = 0
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[ / /
= —1—¢E+BV(K):0

@ Envelope condition:
V(K)=aAK* "+ (1 -0) +¢(1 — 5)1 + oI
K 2K?
01
2 K2

_ I
— V/(K')=aAK"*" +(1-96) {1+¢?] +
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@ Combining the FOC and envelope condition and rearranging:

1+¢£ :B a,AKafl_i_? It2+1 +(1—6)(1+¢It+1>
K, U2 K2 K
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@ Combining the FOC and envelope condition and rearranging:

1462t — glaage 4 @ Jin +(1—5)(1+¢It“>
Ky 2K, Kip

@ Note this is the same optimality condition we obtained in PS1.
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3. Show that the solution to the Bellman equation exists
and is unique.
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@ Consider the metric space of bounded, continuous functions
Froblem 3 f: X = Rwith p(f, g) = max,cx |f(z) — g(z)|, which can be
shown to be a complete metric space.
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@ Consider the metric space of bounded, continuous functions
Froblem 3 f: X = Rwith p(f, g) = max,cx |f(z) — g(z)|, which can be
shown to be a complete metric space.

@ The Bellman operator

Tf= max {U(B B') + Bf(B')},

B’el'(B

with «(-, -) bounded and continuous, and I'(-) compact-valued and
continuous, maps this space into itself.
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@ The Bellman operator can be shown to be a contraction mapping.
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@ The Bellman operator can be shown to be a contraction mapping.

@ The contraction mapping theorem ensures the solution, a fixed
point of T, exists and is unique.
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4. Rewrite the Bellman equation for an arbitrary period
length of A.
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@ The problem for an arbitrary length of period A is

2
V(Kt) = mIaX {AKtaA — [tA - g;:'(_tA + e—pA V(K)H—A)}

t

St Kt-i—A == (1 - (SA)Kt —'— [tA
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5. Derive the HJB equation taking the limit A — 0.
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Problem 3 ¢ IQ
0= max {AK{"A — LA — §K—tA + (1= pA)YV(Kipn) — V(Kt)}
t t
e

2 —_— —_—
pV(Kita) = max {AKta - I — ?I—t + V(Ki+a) = V(K) Kiva = K
It 2 Kt Kt+A - Kt A
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0= mIaX {AKtaA — ItA - §?A + (1 - pA) V(Kt+A) - V(Kt)}
t t
<~
¢ 12 V(Kiin) — V(K) Kin — K
K = AKY - [ — 2%
pV(Kitn) mlztix{ h oK, + Kon K, A

@ Taking the limit as A — 0 on both sides:

I? :
pV(K;) =max{ AK® — I, — o1 + V(K K,
Iy 2 K,
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Kipn — Ki
Problem 3 A - [t - 5Kt

@ Taking the limit as A — 0 on both sides:
Kt — ]t - 5Kt
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@ From the law of motion of capital:
Kipn — Ky
A

@ Taking the limit as A — 0 on both sides:
Kt — ]t - 5Kt

@ Finally, plugging into the expression from the previous slide, we
obtain the HJB equation:
¢ I?

pV(K) = max {AK“ —I =5 T V) (I - 6K)}



