#### EC400: DPDE

Class #3

Pinjas Albagli p.m.albagli@lse.ac.uk

September 2024

### Contents

lass #3

EC400: DPDE

Problem 3

1 Problem 3

Class #3

EC400: DPDE

Problem 3

Consider the investment problem from Problem Set 1: given initial value of capital  $K_0$ , a firm chooses investment path  $\{I_t\}_{t=0}^{\infty}$  to maximize profits

$$\sum_{t=0}^{\infty} \beta^t \left[ AK_t^{\alpha} - I_t - \frac{\phi}{2} \frac{I_t^2}{K_t} \right]$$

subject to the capital law of motion

$$K_{t+1} = (1 - \delta)K_t + I_t.$$

### Problem 3 Question 1

Class #3

EC400: DPD

Problem 3

1. Write down the firm's problem in a recursive form.

### Problem 3 Question 1: Solution

Class #3

EC400: DPD

Problem 3

• From the law of motion of capital:  $I = K' - (1 - \delta)K$ .

# Problem 3 Question 1: Solution

Class #3

EC400: DPDI

Problem 3

• From the law of motion of capital:  $I = K' - (1 - \delta)K$ .

The Bellman equation is

$$V(K) = \max_{K'} \left\{ AK^{\alpha} - K' + (1 - \delta)K - \frac{\phi}{2} \frac{(K' - (1 - \delta)K)^2}{K} + \beta V(K') \right\}$$

# Problem 3 Question 2

Class #3

EC400: DPD

Problem 3

2. Use the first-order and envelope conditions to derive the optimality condition for  $K_t$ .

### Problem 3 Question 2: Solution

Class #3

EC400: DPDE

Problem 3

• FOC:

$$-1 - \phi \frac{K' - (1 - \delta)K}{K} + \beta V'(K') = 0$$

$$\iff -1 - \phi \frac{I}{K} + \beta V'(K') = 0$$

### Problem 3 Question 2: Solution

Class #3

Problem 3

FOC:

Envelope condition:

 $\iff -1 - \phi \frac{I}{K} + \beta V'(K') = 0$ 

 $-1 - \phi \frac{K' - (1 - \delta)K}{\nu} + \beta V'(K') = 0$ 

 $V'(K) = \alpha A K^{\alpha - 1} + (1 - \delta) + \phi (1 - \delta) \frac{I}{K} + \frac{\phi}{2} \frac{I^2}{K^2}$ 

 $\implies V'(K') = \alpha A K'^{\alpha - 1} + (1 - \delta) \left[ 1 + \phi \frac{I'}{K'} \right] + \frac{\phi}{2} \frac{I'^2}{K'^2}$ 

**Question 2: Solution** 

Class #3

EC400: DPDI

Problem 3

• Combining the FOC and envelope condition and rearranging:

$$1 + \phi \frac{I_t}{K_t} = \beta \left[ \alpha A K_{t+1}^{\alpha - 1} + \frac{\phi}{2} \frac{I_{t+1}^2}{K_{t+1}^2} + (1 - \delta) \left( 1 + \phi \frac{I_{t+1}}{K_{t+1}} \right) \right]$$

6/14

### Problem 3 Question 2: Solution

Class #3

EC400: DPD

Problem 3

• Combining the FOC and envelope condition and rearranging:

$$1 + \phi \frac{I_t}{K_t} = \beta \left[ \alpha A K_{t+1}^{\alpha - 1} + \frac{\phi}{2} \frac{I_{t+1}^2}{K_{t+1}^2} + (1 - \delta) \left( 1 + \phi \frac{I_{t+1}}{K_{t+1}} \right) \right]$$

• Note this is the same optimality condition we obtained in PS1.

### Problem 3 Question 3

Class #3

EC400: DPD

Problem 3

3. Show that the solution to the Bellman equation exists and is unique.

**Question 3: Solution** 

Class #3

EC400: DPDE

Problem 3

• Consider the metric space of bounded, continuous functions  $f: X \to \mathbb{R}$  with  $\rho(f,g) \equiv \max_{x \in X} |f(x) - g(x)|$ , which can be shown to be a complete metric space.

### Problem 3 Question 3: Solution

Class #3

EC400: DPDE

Problem 3

• Consider the metric space of bounded, continuous functions  $f: X \to \mathbb{R}$  with  $\rho(f,g) \equiv \max_{x \in X} |f(x) - g(x)|$ , which can be shown to be a complete metric space.

The Bellman operator

$$Tf \equiv \max_{B' \in \Gamma(B)} \{ u(B, B') + \beta f(B') \},$$

with  $u(\cdot, \cdot)$  bounded and continuous, and  $\Gamma(\cdot)$  compact-valued and continuous, maps this space into itself.

### Problem 3 Question 3: Solution

Class #3

EC400: DPD

Problem 3

• The Bellman operator can be shown to be a contraction mapping.

# Problem 3 Question 3: Solution

Class #3

EC400: DPD

Problem 3

• The Bellman operator can be shown to be a contraction mapping.

 $\bullet$  The contraction mapping theorem ensures the solution, a fixed point of  $\mathrm{T},$  exists and is unique.

### Problem 3 Question 4

Class #3

EC400: DPD

Problem 3

4. Rewrite the Bellman equation for an arbitrary period length of  $\Delta$ .

Question 4: Solution

Class #3

EC400: DPDE

Problem 3

• Note that the investment cost  $I_t$  and the adjustment cost  $\frac{\phi}{2}\frac{I_t^2}{K_t}$  are flows.

### Problem 3 Question 4: Solution

**Class #3** C400: DPDI

EC400: DPD

- Note that the investment cost  $I_t$  and the adjustment cost  $\frac{\phi}{2}\frac{I_t^2}{K_t}$  are flows.
- The problem for an arbitrary length of period  $\Delta$  is

$$V(K_t) = \max_{I_t} \left\{ AK_t^{\alpha} \Delta - I_t \Delta - \frac{\phi}{2} \frac{I_t^2}{K_t} \Delta + e^{-\rho \Delta} V(K_{t+\Delta}) \right\}$$

s.t. 
$$K_{t+\Delta} = (1 - \delta \Delta)K_t + I_t \Delta$$

### Problem 3 Question 5

Class #3

EC400: DPDI

Problem 3

5. Derive the HJB equation taking the limit  $\Delta \to 0$ .

Question 5: Solution

Class #3

EC400: DPDE

Problem 3

• Using  $e^{-\rho\Delta}\approx 1-\rho\Delta$ , rearranging, and dividing by  $\Delta$  on both sides:

$$0 = \max_{I_t} \left\{ AK_t^{\alpha} \Delta - I_t \Delta - \frac{\phi}{2} \frac{I_t^2}{K_t} \Delta + (1 - \rho \Delta) V(K_{t+\Delta}) - V(K_t) \right\}$$

$$\iff \rho V(K_{t+\Delta}) = \max_{I_t} \left\{ AK_t^{\alpha} - I_t - \frac{\phi}{2} \frac{I_t^2}{K_t} + \frac{V(K_{t+\Delta}) - V(K_t)}{K_{t+\Delta} - K_t} \frac{K_{t+\Delta} - K_t}{\Delta} \right\}$$

### Problem 3 Question 5: Solution

Class #3

Problem 3

• Using  $e^{-\rho\Delta}\approx 1-\rho\Delta$ , rearranging, and dividing by  $\Delta$  on both sides:

$$0 = \max_{I_t} \left\{ AK_t^{\alpha} \Delta - I_t \Delta - \frac{\phi}{2} \frac{I_t^2}{K_t} \Delta + (1 - \rho \Delta) V(K_{t+\Delta}) - V(K_t) \right\}$$

$$\iff \rho V(K_{t+\Delta}) = \max_{I_t} \left\{ AK_t^{\alpha} - I_t - \frac{\phi}{2} \frac{I_t^2}{K_t} + \frac{V(K_{t+\Delta}) - V(K_t)}{K_{t+\Delta} - K_t} \frac{K_{t+\Delta} - K_t}{\Delta} \right\}$$

• Taking the limit as  $\Delta \to 0$  on both sides:

$$\rho V(K_t) = \max_{I_t} \left\{ AK_t^{\alpha} - I_t - \frac{\phi}{2} \frac{I_t^2}{K_t} + V'(K_t) \dot{K}_t \right\}$$

Question 5: Solution

Class #3

EC400: DPDI

Problem 3

• From the law of motion of capital:

$$\frac{K_{t+\Delta} - K_t}{\Delta} = I_t - \delta K_t$$

Question 5: Solution

Class #3

EC400: DPDE

Problem 3

• From the law of motion of capital:

$$\frac{K_{t+\Delta} - K_t}{\Delta} = I_t - \delta K_t$$

• Taking the limit as  $\Delta \to 0$  on both sides:

$$\dot{K}_t = I_t - \delta K_t$$

# Problem 3 Question 5: Solution

Class #3
EC400: DPD

Problem 3

• From the law of motion of capital:

$$\frac{K_{t+\Delta} - K_t}{\Delta} = I_t - \delta K_t$$

• Taking the limit as  $\Delta \to 0$  on both sides:

$$\dot{K}_t = I_t - \delta K_t$$

 Finally, plugging into the expression from the previous slide, we obtain the HJB equation:

$$\rho V(K) = \max_{I} \left\{ AK^{\alpha} - I - \frac{\phi}{2} \frac{I^{2}}{K} + V'(K) \left( I - \delta K \right) \right\}$$