EC400: DPDE

Class #2

Pinjas Albagli p.m.albagli@lse.ac.uk

September 2024

Contents

Class #2

EC400: DPDI

Problem 1

roblem 3

1 Problem 1

Class #2

EC400: DPDI

Problem 1

Problem 3

The evolution of x_t is described by a linear system

$$x_{t+1} = Ax_t, \qquad A = \begin{pmatrix} 1 & -0.5 \\ -1 & 1.5 \end{pmatrix}.$$

Problem 1 Question 1

Class #2

EC400: DPD

Problem 1

Problem 3

 Find the steady state of the system. Is it a source, a sink, or a saddle point?

Question 1: Solution

Class #2

Problem 1

Steady state:

$$A\bar{x} = \bar{x}$$

$$\iff (A - I)\bar{x} = 0$$

$$\iff \begin{pmatrix} 0 & -0.5 \\ -1 & 0.5 \end{pmatrix} \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Problem 1 Question 1: Solution

Class #2

EC400: DPD

Problem 1

Problem 3

Steady state:

$$A\bar{x} = \bar{x}$$

$$\iff (A - I)\,\bar{x} = 0$$

$$\iff \begin{pmatrix} 0 & -0.5 \\ -1 & 0.5 \end{pmatrix} \begin{pmatrix} \bar{x}_1 \\ \bar{x}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• The only solution is $\bar{x} = 0$.

Question 1: Solution

Class #2

EC400: DPDE

Problem 1

Problem 3

• eigenvalues: An eigenvalue λ solves

$$|A - \lambda I| = 0$$

$$\iff \begin{vmatrix} 1 - \lambda & -0.5 \\ -1 & 1.5 - \lambda \end{vmatrix} = 0$$

$$\iff \lambda^2 - 2.5\lambda + 1 = 0$$

Question 1: Solution

Class #2

EC400: DPDF

Problem 1

Problem 3

• eigenvalues: An eigenvalue λ solves

$$|A - \lambda I| = 0$$

$$\iff \begin{vmatrix} 1 - \lambda & -0.5 \\ -1 & 1.5 - \lambda \end{vmatrix} = 0$$

$$\iff \lambda^2 - 2.5\lambda + 1 = 0$$

• Solving, $\lambda_1 = 2$ and $\lambda_2 = 0.5$.

Problem 1 Question 1: Solution

Class #2

Problem 3

• eigenvalues: An eigenvalue
$$\lambda$$
 solves

$$|A - \lambda I| = 0$$

$$\iff \begin{vmatrix} 1 - \lambda & -0.5 \\ -1 & 1.5 - \lambda \end{vmatrix} = 0$$

$$\iff \lambda^2 - 2.5\lambda + 1 = 0$$

- Solving, $\lambda_1 = 2$ and $\lambda_2 = 0.5$.
- $|\lambda_1| > 1$ and $|\lambda_2| < 1 \implies$ SS is a **saddle point**.

Problem 1 Question 2

Class #2

EC400: DPD

Problem 1

Problem 3

2. Draw the iso-lines and show with arrows the directions of the trajectories.

Question 2: Solution

Class #2

EC400: DPDE

Problem 1

Problem 3

• From the first equation:

$$x_{1,t+1} = x_{1,t} - 0.5x_{2,t} \iff \Delta x_{1,t+1} = -0.5x_{2,t}$$

Question 2: Solution

Class #2

EC400: DPDE

Problem 1

Problem 3

From the first equation:

$$x_{1,t+1} = x_{1,t} - 0.5x_{2,t} \iff \Delta x_{1,t+1} = -0.5x_{2,t}$$
.

From the second equation:

$$x_{2,t+1} = -x_{1,t} + 1.5x_{2,t} \iff \Delta x_{2,t+1} = -x_{1,t} + 0.5x_{2,t}$$

Question 2: Solution

Class #2

EC400: DPDE

Problem 1

Problem 3

From the first equation:

$$x_{1,t+1} = x_{1,t} - 0.5x_{2,t} \iff \Delta x_{1,t+1} = -0.5x_{2,t}$$
.

• From the second equation:

$$x_{2,t+1} = -x_{1,t} + 1.5x_{2,t} \iff \Delta x_{2,t+1} = -x_{1,t} + 0.5x_{2,t}$$

• Thus, the iso-lines are $\Delta x_{1,t+1} = 0 \iff \boxed{x_{2,t} = 0}$ and $\Delta x_{2,t+1} = 0 \iff \boxed{x_{2,t} = 2x_{1,t}}$.

Question 2: Solution

Class #2

EC400: DPDE

Problem 1

Due bless

• From the first equation:

$$x_{1,t+1} = x_{1,t} - 0.5 x_{2,t} \iff \Delta x_{1,t+1} = -0.5 x_{2,t}$$
.

• From the second equation:

$$x_{2,t+1} = -x_{1,t} + 1.5x_{2,t} \iff \Delta x_{2,t+1} = -x_{1,t} + 0.5x_{2,t}$$

- Thus, the iso-lines are $\Delta x_{1,t+1}=0\iff \boxed{x_{2,t}=0}$ and $\Delta x_{2,t+1}=0\iff \boxed{x_{2,t}=2x_{1,t}}.$
- Moreover, $\Delta x_{1,t+1} \ge 0 \iff x_{2,t} \le 0$ and $\Delta x_{2,t+1} \ge 0 \iff x_{2,t} \ge 2x_{1,t}$

6/47

Question 2: Solution

Class #2

EC400: DPDE

Problem 1

Problem 1 Question 3

Class #2

EC400: DPD

Problem 1

Problem :

3. Decompose matrix A and show the eigenvectors on the phase diagram.

Question 3: Solution

Class #2

EC400: DPDI

Problem 1

Problem :

• If λ is an eigenvalue, its eigenvector v solves $(A - \lambda I) v = 0$. Thus

Question 3: Solution

Class #2

EC400: DPDI

Problem 1

Problem

• If λ is an eigenvalue, its eigenvector v solves $(A - \lambda I) v = 0$. Thus

• For $\lambda_1 = 2$:

$$\begin{pmatrix} -1 & -0.5 \\ -1 & -0.5 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$$

$$\iff v_2 = -2v_1,$$

So
$$v^1 = \begin{pmatrix} 1 & -2 \end{pmatrix}'$$

9/4

Question 3: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• For $\lambda_1 = 0.5$:

$$\begin{pmatrix} 0.5 & -0.5 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$$

$$\iff v_2 = v_1,$$

So
$$v^2 = \begin{pmatrix} 1 & 1 \end{pmatrix}'$$

Question 3: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• The matrix of eigenvectors is then

$$Q = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$$

with inverse

$$Q^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$$

Question 3: Solution

Class #2

EC400: DPD

Problem 1

Problem 3

• Finally, the decomposition of matrix *A* is

$$A = Q\Lambda Q^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}.$$

Question 3: Solution

Class #2

EC400: DPDI

Problem 1

Problem 1 Question 4

Class #2

EC400: DPD

Problem 1

Problem 3

4. Consider $x_0 = \begin{pmatrix} 1 & 0 \end{pmatrix}'$, compute y_0 of the corresponding decoupled system, and show dynamics for periods t=1 and t=2 on the phase diagram.

Question 4: Solution

Class #2

EC400: DPDE

Problem 1

• Let
$$y_t = Q^{-1}x_t \implies y_{t+1} = \Lambda y_t$$
. Then,

Question 4: Solution

Class #2

EC400: DPDE

Problem 1

)..... la la

• Let
$$y_t = Q^{-1}x_t \implies y_{t+1} = \Lambda y_t$$
. Then,

•
$$y_0 = Q^{-1}x_0 = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$$
.

Question 4: Solution

Class #2

EC400: DPDE

Problem 1

Problem '

• Let
$$y_t = Q^{-1}x_t \implies y_{t+1} = \Lambda y_t$$
. Then,

•
$$y_0 = Q^{-1}x_0 = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$$
.

•
$$y_1 = \Lambda y_0 = \begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}.$$

Question 4: Solution

Class #2

EC400: DPDE

Problem 1

• Let
$$y_t = Q^{-1}x_t \implies y_{t+1} = \Lambda y_t$$
. Then,

•
$$y_0 = Q^{-1}x_0 = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$$
.

•
$$y_1 = \Lambda y_0 = \begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}.$$

•
$$x_1 = Qy_1 = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
.

Question 4: Solution

Class #2

EC400: DPDI

Problem 1

•
$$y_2 = \Lambda y_1 = \begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{4}{3} \\ \frac{1}{6} \end{pmatrix}.$$

Question 4: Solution

Class #2

EC400: DPDI

Problem 1

•
$$y_2 = \Lambda y_1 = \begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{4}{3} \\ \frac{1}{6} \end{pmatrix}.$$

•
$$x_2 = Qy_2 = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} \frac{4}{3} \\ \frac{1}{6} \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ -\frac{5}{2} \end{pmatrix}.$$

Problem 1 Question 4: Solution

Class #2

EC400: DPDE

Problem 1

Class #2

EC400. Di

Problem :

Problem 3

Consider the investment problem from Problem Set 1: given initial value of capital K_0 , a firm chooses investment path $\{I_t\}_{t=0}^{\infty}$ to maximize profits

$$\sum_{t=0}^{\infty} \beta^t \left[A K_t^{\alpha} - I_t - \frac{\phi}{2} \frac{I_t^2}{K_t} \right]$$

subject to the capital law of motion

$$K_{t+1} = (1 - \delta)K_t + I_t.$$

Assume that $\delta=0$ and define $Q_t\equiv\beta^{-t}\lambda_t$, where λ_t is the Lagrange multiplier from the optimization problem.

Problem 3 Question 1

Class #2

EC400: DPD

Problem 1

Problem 3

1. Write down the (non-linear) system of equations for K_t and Q_t .

Problem 3 Question 1: Solution

Class #2

EC400: DPD

Problem 1

Problem 3

• From PS1 and using
$$\delta = 0$$
:

$$[I_t]$$

$$-\beta^t \left(1 + \phi \frac{I_t}{K_t} \right) + \lambda_t = 0$$

$$\iff 1 + \phi \frac{I_t}{K_t} = Q_t$$

$$[K_{t+1}] -\lambda_t + \beta^{t+1} \left(\alpha A K_{t+1}^{\alpha - 1} + \frac{\phi}{2} \frac{I_{t+1}^2}{K_{t+1}^2} \right) + \lambda_{t+1} = 0$$

$$\iff \beta \left[\alpha A K_{t+1}^{\alpha - 1} + \frac{\phi}{2} \frac{I_{t+1}^2}{K_{t+1}^2} + Q_{t+1} \right] = Q_t$$

0/47

Problem 3 Question 1: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• From the capital law of motion: $I_t = K_{t+1} - K_t$. Substituting into the FOC:

$$[I_t] 1 + \phi \frac{K_{t+1}}{K_t} - \phi = Q_t$$

[
$$K_{t+1}$$
]
$$\beta \left[\alpha A K_{t+1}^{\alpha-1} + \frac{\phi}{2} \frac{(K_{t+2} - K_{t+1})^2}{K_{t+1}^2} + Q_{t+1} \right] = Q_t$$

Problem 3 Question 2

Class #2

EC400: DPD

Problem:

Problem 3

2. Determine the state variables and the control variables in this system.

Problem 3 Question 2: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

 \bullet K_t is a state variable.

Problem 3 Question 2: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• K_t is a state variable.

ullet Q_t is a control variable.

Problem 3 Question 3

Class #2

EC400: DPD

Problem :

Problem 3

3. Solve for the steady state.

Question 3: Solution

Class #2

EC400: DPDI

Problem

Problem 3

• In a SS $K_t = \bar{K} \ \forall \ t$ and $Q_t = \bar{Q} \ \forall \ t$.

Question 3: Solution

Class #2

EC400: DPDI

Problem

Problem 3

• In a SS $K_t = \bar{K} \ \forall \ t \ \text{and} \ Q_t = \bar{Q} \ \forall \ t.$

• Imposing SS in [I_t]: $ar{Q}=1+\phirac{ar{K}}{K}-\phi\iff ar{Q}=1$.

Question 3: Solution

Class #2

EC400: DPDI

Problem 3

Problem 3

• In a SS $K_t = \bar{K} \ \forall \ t$ and $Q_t = \bar{Q} \ \forall \ t$.

• Imposing SS in [I_t]: $\bar{Q} = 1 + \phi \frac{\bar{K}}{K} - \phi \iff \bar{Q} = 1$.

• Imposing SS in $[K_{t+1}]$ and using $\bar{Q}=1$:

$$1 = \beta \left[\alpha A \bar{K}^{\alpha - 1} + \frac{\phi}{2} \frac{\left(\bar{K} - \bar{K}\right)^2}{\bar{K}^2} + 1 \right] \iff \bar{K} = \left(\frac{\beta \alpha A}{1 - \beta} \right)^{\frac{1}{1 - \alpha}} .$$

Problem 3 Question 4

Class #2

EC400: DPD1

Problem :

Problem 3

4. Log-linearize the equations for K_t and Q_t around the steady state. Denote the log deviations with small letters k_t and q_t .

Problem 3 Question 4: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• Let $q_t \equiv \ln\left(\frac{Q_t}{Q}\right)$ and note that

$$Q_t = \bar{Q} rac{Q_t}{\bar{Q}} = \bar{Q} e^{\ln\left(rac{Q_t}{\bar{Q}}
ight)} = \bar{Q} e^{q_t} pprox \bar{Q} \left(1 + q_t
ight) = \left(1 + q_t
ight).$$

Problem 3 Question 4: Solution

Class #2

EC400: DPDE

Problem 1

Problem 3

ullet Similarly, let $k_t \equiv \ln\left(\frac{K_t}{K}
ight)$ and note that

Question 4: Solution

Class #2

EC400: DPDI

Problem 1

- ullet Similarly, let $k_t \equiv \ln\left(rac{K_t}{K}
 ight)$ and note that
 - $K_t = \bar{K}e^{k_t} \approx \bar{K}(1+k_t)$.

Question 4: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• Similarly, let $k_t \equiv \ln\left(\frac{K_t}{K}\right)$ and note that

- $\bullet K_t = \bar{K}e^{k_t} \approx \bar{K}(1+k_t).$
- $\bullet \ \frac{K_{t+1}}{K_t} = \frac{\bar{K}e^{k_{t+1}}}{\bar{K}e^{k_t}} = e^{k_{t+1}-k_t} \approx 1 + k_{t+1} k_t.$

Question 4: Solution

Class #2

EC400: DPDI

Problem 1

- Similarly, let $k_t \equiv \ln\left(\frac{K_t}{K}\right)$ and note that
 - $K_t = \bar{K}e^{k_t} \approx \bar{K}(1+k_t)$.
 - $\frac{K_{t+1}}{K_t} = \frac{\bar{K}e^{k_{t+1}}}{\bar{K}e^{k_t}} = e^{k_{t+1}-k_t} \approx 1 + k_{t+1} k_t$.
 - $\left(\frac{K_{t+2} K_{t+1}}{K_{t+1}}\right)^2 = \left(\frac{\bar{K}e^{k_{t+2}}}{\bar{K}e^{k_{t+1}}} 1\right)^2 = \left(e^{k_{t+2} k_{t+1}} 1\right)^2 \\
 \approx \left(1 + k_{t+2} k_{t+1} 1\right)^2 = \left(k_{t+2} k_{t+1}\right)^2.$

Question 4: Solution

Class #2

Problem 1
Problem 3

- Similarly, let $k_t \equiv \ln\left(\frac{K_t}{\kappa}\right)$ and note that
 - $\bullet K_t = \bar{K}e^{k_t} \approx \bar{K}(1+k_t).$
 - $\bullet \frac{K_{t+1}}{K_t} = \frac{\bar{K}e^{k_{t+1}}}{\bar{K}e^{k_t}} = e^{k_{t+1}-k_t} \approx 1 + k_{t+1} k_t.$
 - $\left(\frac{K_{t+2}-K_{t+1}}{K_{t+1}}\right)^2 = \left(\frac{\bar{K}e^{k_{t+2}}}{\bar{K}e^{k_{t+1}}} 1\right)^2 = \left(e^{k_{t+2}-k_{t+1}} 1\right)^2 \\
 \approx \left(1 + k_{t+2} k_{t+1} 1\right)^2 = \left(k_{t+2} k_{t+1}\right)^2.$
 - $\alpha A K_{t+1}^{\alpha-1} = \alpha A \left(\bar{K} e^{k_{t+1}} \right)^{\alpha-1} = \alpha A \bar{K}^{\alpha-1} e^{(\alpha-1)k_{t+1}}$ $\approx \alpha A \frac{1-\beta}{\beta \alpha A} \left(1 + (\alpha-1)k_{t+1} \right) = \frac{1-\beta}{\beta} - \kappa k_{t+1}, \text{ where } \kappa \equiv \frac{(1-\alpha)(1-\beta)}{\beta}.$

Problem 3 Question 4: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• Plugging these approximations into the non-linear system:

$$[I_t] 1 + q_t = 1 + \phi (1 + k_{t+1} - k_t) - \phi$$

$$\iff k_{t+1} = k_t + \frac{1}{\phi} q_t$$

$$[K_{t+1}] 1 + q_t = \beta \left[\frac{1-\beta}{\beta} - \kappa k_{t+1} + \frac{\phi}{2} (k_{t+2} - k_{t+1})^2 + 1 + q_{t+1} \right]$$

Question 4: Solution

Class #2

EC400: DPD

Problem 1

Problem 3

• Simplifying $[K_{t+1}]$ by discarding the second-order term $\frac{\phi}{2} \, (k_{t+2} - k_{t+1})^2$ and plugging in the expression for k_{t+1} from $[I_t]$, we arrive at the system

$$[I_t] k_{t+1} = k_t + \frac{1}{\phi} q_t$$

[
$$K_{t+1}$$
] $1 + q_t = \beta \left[\frac{1 - \beta}{\beta} - \kappa \left(k_t + \frac{1}{\phi} q_t \right) + 1 + q_{t+1} \right]$

$$\iff q_{t+1} = \kappa k_t + \left[\frac{1}{\beta} + \frac{\kappa}{\phi}\right] q_t$$

Problem 3 Question 4: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

Thus, the (log-linearized) dynamic system can be written as

$$\underbrace{\begin{pmatrix} k_{t+1} \\ q_{t+1} \end{pmatrix}}_{\equiv x_{t+1}} = \underbrace{\begin{pmatrix} 1 & \frac{1}{\phi} \\ \kappa & \frac{1}{\beta} + \frac{\kappa}{\phi} \end{pmatrix}}_{\equiv A} \underbrace{\begin{pmatrix} k_t \\ q_t \end{pmatrix}}_{\equiv x_t}.$$

Problem 3 Question 5

Class #2

EC400: DPD

Problem:

Problem 3

5. Is the Blanchard-Kahn condition for a unique solution satisfied?

Problem 3 Question 5: Solution

Class #2

EC400: DPDI

Problem

Problem 3

• Blanchard-Kahn condition: Let m be the # of control variables and n the number of eigenvalues outside the unit circle. Then,

Question 5: Solution

Class #2

EC400: DPDI

Problem :

- Blanchard-Kahn condition: Let m be the # of control variables and n the number of eigenvalues outside the unit circle. Then,
 - $m = n \implies$ unique solution;

Problem 3 Question 5: Solution

Class #2

EC400: DPDI

Problem:

- Blanchard-Kahn condition: Let m be the # of control variables and n the number of eigenvalues outside the unit circle. Then,
 - $m = n \implies$ unique solution;
 - $m > n \implies$ multiple solutions; and

Question 5: Solution

Class #2

EC400: DPDE

Problem:

Problem 3

• Blanchard-Kahn condition: Let m be the # of control variables and n the number of eigenvalues outside the unit circle. Then,

- $m = n \implies$ unique solution;
- $m > n \implies$ multiple solutions; and
- $m < n \implies$ no solution.

Problem 3 Question 5: Solution

Class #2

EC400: DPDF

Problem

- Blanchard-Kahn condition: Let m be the # of control variables and n the number of eigenvalues outside the unit circle. Then,
 - $m = n \implies$ unique solution;
 - $m > n \implies$ multiple solutions; and
 - $m < n \implies$ no solution.
- Here, we have m = 1. Will need to look at the eigenvalues to find n.

Problem 3 Question 5: Solution

Class #2

Problem 1

Problem 3

• **eigenvalues**: Let γ_1 and γ_2 represent the eigenvalues of matrix A (defined in previous question). An eigenvalue γ solves

$$|A - \gamma I| = 0$$

$$\iff \begin{vmatrix} 1 - \gamma & \frac{1}{\phi} \\ \kappa & \frac{1}{\beta} + \frac{\kappa}{\phi} - \gamma \end{vmatrix} = 0$$

$$\iff \gamma^2 - \left(1 + \frac{1}{\beta} + \frac{\kappa}{\phi}\right)\gamma + \frac{1}{\beta} = 0$$

Question 5: Solution

Class #2

EC400: DPDE

Problem :

• Let
$$f(\gamma)=\gamma^2-\left(1+\frac{1}{\beta}+\frac{\kappa}{\phi}\right)\gamma+\frac{1}{\beta}$$
 and note that

Question 5: Solution

Class #2

EC400: DPDE

Problem 1

• Let
$$f(\gamma)=\gamma^2-\left(1+\frac{1}{\beta}+\frac{\kappa}{\phi}\right)\gamma+\frac{1}{\beta}$$
 and note that

•
$$f(0) = \frac{1}{\beta} > 0$$
.

Question 5: Solution

Class #2

EC400: DPDE

Problem 1

• Let
$$f(\gamma)=\gamma^2-\left(1+\frac{1}{\beta}+\frac{\kappa}{\phi}\right)\gamma+\frac{1}{\beta}$$
 and note that

•
$$f(0) = \frac{1}{\beta} > 0$$
.

•
$$f(1) = -\frac{\kappa}{\phi} < 0$$
.

Problem 3 Question 5: Solution

Class #2

EC400: DPDE

Problem 1

Problem 3

• Let
$$f(\gamma)=\gamma^2-\left(1+\frac{1}{\beta}+\frac{\kappa}{\phi}\right)\gamma+\frac{1}{\beta}$$
 and note that

•
$$f(0) = \frac{1}{\beta} > 0$$
.

•
$$f(1) = -\frac{\kappa}{\phi} < 0$$
.

• $f(\gamma)$ is a parabola with a min at $\frac{1}{2}+\frac{1}{2\beta}+\frac{\kappa}{2\phi}>1$, so $\left(0,f(0)\right)$ and $\left(1,f(1)\right)$ lie on its decreasing side. Thus, $\gamma_1>1$ and $\gamma_2\in(0,1)$, i.e., $\boxed{n=1}$.

Problem 3 Question 5: Solution

Class #2

EC400: DPDI

Problem :

Problem 3

 \bullet The Blanchard-Kahn condition for a unique solution is satisfied since m=n.

Question 5: Solution

Class #2

EC400: DPDI

Problem :

Problem 3

• The Blanchard-Kahn condition for a unique solution is satisfied since m=n.

• For reference,

$$\gamma_{1,2} = \frac{1}{2} \left(1 + \frac{1}{\beta} + \frac{\kappa}{\phi} \pm \sqrt{\left(1 + \frac{1}{\beta} + \frac{\kappa}{\phi} \right)^2 - \frac{4}{\beta}} \right).$$

Problem 3 Question 6

Class #2

EC400: DPD

Problem :

Problem 3

6. Solve for the saddle path using the Blanchard-Kahn method.

Question 6: Solution

Class #2

EC400: DPDF

Problem 1

Problem 3

• If γ is an eigenvalue, its eigenvector v solves

$$(A - \gamma I) v = 0$$

$$\iff \begin{pmatrix} 1 - \gamma & \frac{1}{\phi} \\ \kappa & \frac{1}{\beta} + \frac{\kappa}{\phi} - \gamma \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$$

Problem 3 Question 6: Solution

Class #2

Problem 1

Problem 3

$$ullet$$
 If γ is an eigenvalue, its eigenvector v solves

$$(A - \gamma I) v = 0$$

$$\iff \begin{pmatrix} 1 - \gamma & \frac{1}{\phi} \\ \kappa & \frac{1}{\beta} + \frac{\kappa}{\phi} - \gamma \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$$

• Let $v_1 = 1$. Then, from the 1st equation, $v_2 = \phi (\gamma - 1)$. Thus, the eigenvectors are of the form

$$v = \begin{pmatrix} 1 \\ \phi(\gamma - 1) \end{pmatrix}.$$

Question 6: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• The matrix of eigenvectors is then

$$Q = \begin{pmatrix} 1 & 1 \\ \phi(\gamma_1 - 1) & \phi(\gamma_2 - 1) \end{pmatrix}$$

with inverse

$$Q^{-1} = \frac{1}{\phi(\gamma_2 - \gamma_1)} \begin{pmatrix} \phi(\gamma_2 - 1) & -1 \\ -\phi(\gamma_1 - 1) & 1 \end{pmatrix}$$

Question 6: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• Let $y_t = Q^{-1}x_t \iff x_t = Q y_t$. The decoupled system is then

$$\underbrace{\begin{pmatrix} y_{1,t+1} \\ y_{2,t+1} \end{pmatrix}}_{\equiv y_{t+1}} = \underbrace{\begin{pmatrix} \gamma_1 & 0 \\ 0 & \gamma_2 \end{pmatrix}}_{\equiv \Lambda} \underbrace{\begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix}}_{\equiv y_t}.$$

Problem 3 Question 6: Solution

Class #2

EC400: DPI

Problem

Problem 3

• Iterating forward the 1st equation (corresponding to
$$\gamma_1 > 1$$
):

$$y_{1,t} = \gamma_1^{-1} y_{1,t+1}$$

$$= \gamma_1^{-2} y_{1,t+2}$$

$$\vdots$$

$$= \lim_{j \to \infty} \gamma_1^{-j} y_{1,t+j}$$

$$= 0,$$

where we assume that the TVC requires convergence to the SS.

so $\lim_{j\to\infty}y_{1,t+j}=0.$

Question 6: Solution

Class #2

EC400: DPDI

Problem :

Problem 3

• Finally, going back to the original coordinates (i.e., $x_t = Qy_t$):

$$\begin{pmatrix} k_t \\ q_t \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \phi (\gamma_1 - 1) & \phi (\gamma_2 - 1) \end{pmatrix} \begin{pmatrix} 0 \\ y_{2,t} \end{pmatrix}$$

Problem 3

• Finally, going back to the original coordinates (i.e., $x_t = Qy_t$):

$$\begin{pmatrix} k_t \\ q_t \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \phi\left(\gamma_1 - 1\right) & \phi\left(\gamma_2 - 1\right) \end{pmatrix} \begin{pmatrix} 0 \\ y_{2,t} \end{pmatrix}$$

• Plugging the 1st equation $(k_t = y_{2,t})$ into the second one $(q_t = \phi (\gamma_2 - 1) y_{2,t})$, we obtain

$$q_t = -\phi \left(1 - \gamma_2\right) k_t.$$

Problem 3 Question 7

Class #2

EC400: DPD

Problem :

Problem 3

7. Solve for the optimal dynamics of k_t .

Problem 3 Question 7: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

ullet Substituting the optimal q_t into the 1st eqn. of the original system:

$$k_{t+1} = k_t + \frac{1}{\phi} q_t = k_t - (1 - \gamma_2) k_t \iff k_{t+1} = \gamma_2 k_t$$
.

Problem 3 Question 7: Solution

Class #2

EC400: DPD1

Problem :

Problem 3

ullet Substituting the optimal q_t into the 1st eqn. of the original system:

$$k_{t+1} = k_t + \frac{1}{\phi} q_t = k_t - (1 - \gamma_2) k_t \iff k_{t+1} = \gamma_2 k_t$$

• $\gamma_2 \in (0,1) \implies k_t \to 0$ monotonically, i.e., K_t monotonically converges to its steady state level.

Problem 3 Question 8

Class #2

EC400: DPD

Problem 1

Problem 3

8. Draw a phase diagram.

Problem 3 Question 8: Solution

Class #2

EC400: DPDI

Problem 1

Problem 3

• Starting from the log-linearized system:

Question 8: Solution

Class #2

EC400: DPDE

Problem :

Problem 3

Starting from the log-linearized system:

$$\bullet \ k_{t+1} = k_t + \frac{1}{\phi} q_t \iff \boxed{\Delta k_{t+1} = \frac{1}{\phi} q_t}.$$

Question 8: Solution

Class #2

EC400: DPDE

Problem 1

Problem 3

Starting from the log-linearized system:

•
$$k_{t+1} = k_t + \frac{1}{\phi} q_t \iff \Delta k_{t+1} = \frac{1}{\phi} q_t$$
.

•
$$q_{t+1} = \kappa k_t + \left(\frac{1}{\beta} + \frac{\kappa}{\phi}\right) q_t \iff \Delta q_{t+1} = \kappa k_t + \left(\frac{1}{\beta} + \frac{\kappa}{\phi} - 1\right) q_t$$

Question 8: Solution

Class #2

EC400: DPDF

Problem 1

Problem 3

Starting from the log-linearized system:

•
$$k_{t+1} = k_t + \frac{1}{\phi} q_t \iff \Delta k_{t+1} = \frac{1}{\phi} q_t$$
.

•
$$q_{t+1} = \kappa k_t + \left(\frac{1}{\beta} + \frac{\kappa}{\phi}\right) q_t \iff \Delta q_{t+1} = \kappa k_t + \left(\frac{1}{\beta} + \frac{\kappa}{\phi} - 1\right) q_t$$

ullet Thus, the iso-lines are $q_t=0$ and $q_t=rac{\kappa}{1-rac{1}{eta}-rac{\kappa}{\phi}}k_t$.

Problem 3 Question 8: Solution

Class #2

EC400: DPDE

Problem 1

