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Problem 1

The evolution of xt is described by a linear system

xt+1 = Axt , A =

󰀳

󰁃
1 −0.5

−1 1.5

󰀴

󰁄 .
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Problem 1
Question 1

1. Find the steady state of the system. Is it a source, a sink,
or a saddle point?
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Problem 1
Question 1: Solution

Steady state:

Ax̄ = x̄

⇐⇒ (A− I ) x̄ = 0

⇐⇒

󰀳

󰁃
0 −0.5

−1 0.5

󰀴

󰁄

󰀳

󰁃
x̄1

x̄2

󰀴

󰁄 =

󰀳

󰁃
0

0

󰀴

󰁄
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Problem 1
Question 1: Solution

Steady state:

Ax̄ = x̄

⇐⇒ (A− I ) x̄ = 0

⇐⇒

󰀳

󰁃
0 −0.5

−1 0.5

󰀴

󰁄

󰀳

󰁃
x̄1

x̄2

󰀴

󰁄 =

󰀳

󰁃
0

0

󰀴

󰁄

The only solution is x̄ = 0.
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Problem 1
Question 1: Solution

eigenvalues: An eigenvalue λ solves

|A− λI | = 0

⇐⇒

󰀏󰀏󰀏󰀏󰀏󰀏

1− λ −0.5

−1 1.5− λ

󰀏󰀏󰀏󰀏󰀏󰀏
= 0

⇐⇒ λ2 − 2.5λ+ 1 = 0
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Problem 1
Question 1: Solution

eigenvalues: An eigenvalue λ solves

|A− λI | = 0

⇐⇒

󰀏󰀏󰀏󰀏󰀏󰀏

1− λ −0.5

−1 1.5− λ

󰀏󰀏󰀏󰀏󰀏󰀏
= 0

⇐⇒ λ2 − 2.5λ+ 1 = 0

Solving, λ1 = 2 and λ2 = 0.5 .
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Problem 1
Question 1: Solution

eigenvalues: An eigenvalue λ solves

|A− λI | = 0

⇐⇒

󰀏󰀏󰀏󰀏󰀏󰀏

1− λ −0.5

−1 1.5− λ

󰀏󰀏󰀏󰀏󰀏󰀏
= 0

⇐⇒ λ2 − 2.5λ+ 1 = 0

Solving, λ1 = 2 and λ2 = 0.5 .

|λ1| > 1 and |λ2| < 1 =⇒ SS is a saddle point.
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Problem 1
Question 2

2. Draw the iso-lines and show with arrows the directions
of the trajectories.
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Problem 1
Question 2: Solution

From the first equation:
x1,t+1 = x1,t − 0.5x2,t ⇐⇒ ∆x1,t+1 = −0.5x2,t .
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Problem 1
Question 2: Solution

From the first equation:
x1,t+1 = x1,t − 0.5x2,t ⇐⇒ ∆x1,t+1 = −0.5x2,t .

From the second equation:
x2,t+1 = −x1,t + 1.5x2,t ⇐⇒ ∆x2,t+1 = −x1,t + 0.5x2,t .
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Problem 1
Question 2: Solution

From the first equation:
x1,t+1 = x1,t − 0.5x2,t ⇐⇒ ∆x1,t+1 = −0.5x2,t .

From the second equation:
x2,t+1 = −x1,t + 1.5x2,t ⇐⇒ ∆x2,t+1 = −x1,t + 0.5x2,t .

Thus, the iso-lines are ∆x1,t+1 = 0 ⇐⇒ x2,t = 0 and

∆x2,t+1 = 0 ⇐⇒ x2,t = 2x1,t .
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Problem 1
Question 2: Solution

From the first equation:
x1,t+1 = x1,t − 0.5x2,t ⇐⇒ ∆x1,t+1 = −0.5x2,t .

From the second equation:
x2,t+1 = −x1,t + 1.5x2,t ⇐⇒ ∆x2,t+1 = −x1,t + 0.5x2,t .

Thus, the iso-lines are ∆x1,t+1 = 0 ⇐⇒ x2,t = 0 and

∆x2,t+1 = 0 ⇐⇒ x2,t = 2x1,t .

Moreover, ∆x1,t+1 ≷ 0 ⇐⇒ x2,t ≶ 0 and

∆x2,t+1 ≷ 0 ⇐⇒ x2,t ≷ 2x1,t
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Problem 1
Question 2: Solution

x1,t

x2,t
Iso-lines
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Problem 1
Question 3

3. Decompose matrix A and show the eigenvectors on the
phase diagram.
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Problem 1
Question 3: Solution

If λ is an eigenvalue, its eigenvector v solves (A− λI ) v = 0.
Thus
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Problem 1
Question 3: Solution

If λ is an eigenvalue, its eigenvector v solves (A− λI ) v = 0.
Thus

For λ1 = 2:
󰀳

󰁃
−1 −0.5

−1 −0.5

󰀴

󰁄

󰀳

󰁃
v1

v2

󰀴

󰁄 = 0

⇐⇒ v2 = −2v1,

So v1 =
󰀃
1 −2

󰀄′ .
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Problem 1
Question 3: Solution

For λ1 = 0.5:
󰀳

󰁃
0.5 −0.5

−1 1

󰀴

󰁄

󰀳

󰁃
v1

v2

󰀴

󰁄 = 0

⇐⇒ v2 = v1,

So v2 =
󰀃
1 1

󰀄′ .
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Problem 1
Question 3: Solution

The matrix of eigenvectors is then

Q =

󰀣
1 1

−2 1

󰀤

with inverse

Q−1 =
1

3

󰀣
1 −1

2 1

󰀤
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Problem 1
Question 3: Solution

Finally, the decomposition of matrix A is

A = QΛQ−1 = 1
3

󰀣
1 1

−2 1

󰀤󰀣
2 0

0 0.5

󰀤󰀣
1 −1

2 1

󰀤
.
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Problem 1
Question 3: Solution

x1,t

x2,t
Iso-lines
Eigenvectors
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Problem 1
Question 4

4. Consider x0 =
󰀃
1 0

󰀄′, compute y0 of the corresponding
decoupled system, and show dynamics for periods t = 1
and t = 2 on the phase diagram.



Class #2

EC400: DPDE

Problem 1

Problem 3

15/47

Problem 1
Question 4: Solution

Let yt = Q−1xt =⇒ yt+1 = Λyt . Then,
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Problem 1
Question 4: Solution

Let yt = Q−1xt =⇒ yt+1 = Λyt . Then,

y0 = Q−1x0 =
1
3

󰀣
1 −1

2 1

󰀤󰀣
1

0

󰀤
=

󰀣
1
3

2
3

󰀤
.
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Problem 1
Question 4: Solution

Let yt = Q−1xt =⇒ yt+1 = Λyt . Then,

y0 = Q−1x0 =
1
3

󰀣
1 −1

2 1

󰀤󰀣
1

0

󰀤
=

󰀣
1
3

2
3

󰀤
.

y1 = Λy0 =

󰀣
2 0

0 0.5

󰀤󰀣
1
3

2
3

󰀤
=

󰀣
2
3

1
3

󰀤
.
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Problem 1
Question 4: Solution

Let yt = Q−1xt =⇒ yt+1 = Λyt . Then,

y0 = Q−1x0 =
1
3

󰀣
1 −1

2 1

󰀤󰀣
1

0

󰀤
=

󰀣
1
3

2
3

󰀤
.

y1 = Λy0 =

󰀣
2 0

0 0.5

󰀤󰀣
1
3

2
3

󰀤
=

󰀣
2
3

1
3

󰀤
.

x1 = Qy1 =

󰀣
1 1

−2 1

󰀤󰀣
2
3

1
3

󰀤
=

󰀣
1

−1

󰀤
.
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Problem 1
Question 4: Solution

y2 = Λy1 =

󰀣
2 0

0 0.5

󰀤󰀣
2
3

1
3

󰀤
=

󰀣
4
3

1
6

󰀤
.
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Problem 1
Question 4: Solution

y2 = Λy1 =

󰀣
2 0

0 0.5

󰀤󰀣
2
3

1
3

󰀤
=

󰀣
4
3

1
6

󰀤
.

x2 = Qy2 =

󰀣
1 1

−2 1

󰀤󰀣
4
3

1
6

󰀤
=

󰀣
3
2

−5
2

󰀤
.
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Problem 1
Question 4: Solution

x0

x1

x2

x1,t

x2,t
Iso-lines
Eigenvectors
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Problem 3

Consider the investment problem from Problem Set 1: given initial
value of capital K0, a firm chooses investment path {It}∞t=0 to
maximize profits

∞󰁛

t=0

βt
󰁫
AK α

t − It −
φ

2

I 2t
Kt

󰁬

subject to the capital law of motion

Kt+1 = (1− δ)Kt + It .

Assume that δ = 0 and define Qt ≡ β−tλt , where λt is the Lagrange
multiplier from the optimization problem.
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Problem 3
Question 1

1. Write down the (non-linear) system of equations for Kt and Qt .
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Problem 3
Question 1: Solution

From PS1 and using δ = 0 :

−βt
󰀓
1 + φ

It
Kt

󰀔
+ λt = 0[It ]

⇐⇒ 1 + φ
It
Kt

= Qt

−λt + βt+1

󰀕
αAK α−1

t+1 +
φ

2

I 2t+1

K 2
t+1

󰀖
+ λt+1 = 0[Kt+1]

⇐⇒ β

󰀗
αAK α−1

t+1 +
φ

2

I 2t+1

K 2
t+1

+Qt+1

󰀘
= Qt
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Problem 3
Question 1: Solution

From the capital law of motion: It = Kt+1 −Kt . Substituting into
the FOC:

1 + φ
Kt+1

Kt

− φ = Qt[It ]

β

󰀗
αAK α−1

t+1 +
φ

2

(Kt+2 −Kt+1)
2

K 2
t+1

+Qt+1

󰀘
= Qt[Kt+1]
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Problem 3
Question 2

2. Determine the state variables and the control variables in
this system.
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Problem 3
Question 2: Solution

Kt is a state variable.
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Problem 3
Question 2: Solution

Kt is a state variable.

Qt is a control variable.
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Problem 3
Question 3

3. Solve for the steady state.
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Problem 3
Question 3: Solution

In a SS Kt = K̄ ∀ t and Qt = Q̄ ∀ t .
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Problem 3
Question 3: Solution

In a SS Kt = K̄ ∀ t and Qt = Q̄ ∀ t .

Imposing SS in [It ]: Q̄ = 1 + φ K̄
K̄
− φ ⇐⇒ Q̄ = 1 .
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Problem 3
Question 3: Solution

In a SS Kt = K̄ ∀ t and Qt = Q̄ ∀ t .

Imposing SS in [It ]: Q̄ = 1 + φ K̄
K̄
− φ ⇐⇒ Q̄ = 1 .

Imposing SS in [Kt+1] and using Q̄ = 1:

1 = β

󰀗
αAK̄ α−1 + φ

2

(K̄−K̄)
2

K̄ 2 + 1

󰀘
⇐⇒ K̄ =

󰀕
βαA
1−β

󰀖 1
1−α

.
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Problem 3
Question 4

4. Log-linearize the equations for Kt and Qt around the steady
state. Denote the log deviations with small letters kt and qt .
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Problem 3
Question 4: Solution

Let qt ≡ ln
󰀓

Qt

Q̄

󰀔
and note that

Qt = Q̄
Qt

Q̄
= Q̄e

ln
󰀓

Qt
Q̄

󰀔

= Q̄eqt ≈ Q̄ (1 + qt) = (1 + qt) .
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Problem 3
Question 4: Solution

Similarly, let kt ≡ ln
󰀃
Kt

K̄

󰀄
and note that
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Problem 3
Question 4: Solution

Similarly, let kt ≡ ln
󰀃
Kt

K̄

󰀄
and note that

Kt = K̄ ekt ≈ K̄ (1 + kt).
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Problem 3
Question 4: Solution

Similarly, let kt ≡ ln
󰀃
Kt

K̄

󰀄
and note that

Kt = K̄ ekt ≈ K̄ (1 + kt).

Kt+1

Kt
= K̄ ekt+1

K̄ ekt
= ekt+1−kt ≈ 1 + kt+1 − kt .



Class #2

EC400: DPDE

Problem 1

Problem 3

28/47

Problem 3
Question 4: Solution

Similarly, let kt ≡ ln
󰀃
Kt

K̄

󰀄
and note that

Kt = K̄ ekt ≈ K̄ (1 + kt).

Kt+1

Kt
= K̄ ekt+1

K̄ ekt
= ekt+1−kt ≈ 1 + kt+1 − kt .

󰀓
Kt+2−Kt+1

Kt+1

󰀔2
=

󰀓
K̄ ekt+2

K̄ ekt+1
− 1

󰀔2
=

󰀃
ekt+2−kt+1 − 1

󰀄2

≈ (1 + kt+2 − kt+1 − 1)2 = (kt+2 − kt+1)
2.
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Problem 3
Question 4: Solution

Similarly, let kt ≡ ln
󰀃
Kt

K̄

󰀄
and note that

Kt = K̄ ekt ≈ K̄ (1 + kt).

Kt+1

Kt
= K̄ ekt+1

K̄ ekt
= ekt+1−kt ≈ 1 + kt+1 − kt .

󰀓
Kt+2−Kt+1

Kt+1

󰀔2
=

󰀓
K̄ ekt+2

K̄ ekt+1
− 1

󰀔2
=

󰀃
ekt+2−kt+1 − 1

󰀄2

≈ (1 + kt+2 − kt+1 − 1)2 = (kt+2 − kt+1)
2.

αAKα−1
t+1 = αA

󰀃
K̄ ekt+1

󰀄α−1
= αAK̄α−1e(α−1)kt+1

≈ αA 1−β
βαA

󰀓
1 + (α− 1)kt+1

󰀔
= 1−β

β − κ kt+1, where κ ≡ (1−α)(1−β)
β .
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Problem 3
Question 4: Solution

Plugging these approximations into the non-linear system:

1 + qt = 1 + φ (1 + kt+1 − kt)− φ[It ]

⇐⇒ kt+1 = kt +
1

φ
qt

1 + qt = β

󰀗
1− β

β
− κ kt+1 +

φ

2
(kt+2 − kt+1)

2 + 1 + qt+1

󰀘
[Kt+1]



Class #2

EC400: DPDE

Problem 1

Problem 3

30/47

Problem 3
Question 4: Solution

Simplifying [Kt+1] by discarding the second-order term
φ
2
(kt+2 − kt+1)

2 and plugging in the expression for kt+1 from [It ],
we arrive at the system

kt+1 = kt +
1

φ
qt[It ]

1 + qt = β

󰀗
1− β

β
− κ

󰀕
kt +

1

φ
qt

󰀖
+ 1 + qt+1

󰀘
[Kt+1]

⇐⇒ qt+1 = κ kt +

󰀗
1

β
+

κ

φ

󰀘
qt
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Problem 3
Question 4: Solution

Thus, the (log-linearized) dynamic system can be written as
󰀳

󰁃
kt+1

qt+1

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
≡xt+1

=

󰀳

󰁃
1 1

φ

κ 1
β
+ κ

φ

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
≡A

󰀳

󰁃
kt

qt

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
≡xt

.
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Problem 3
Question 5

5. Is the Blanchard-Kahn condition for a unique solution satisfied?
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Problem 3
Question 5: Solution

Blanchard-Kahn condition: Let m be the # of control variables
and n the number of eigenvalues outside the unit circle. Then,
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Problem 3
Question 5: Solution

Blanchard-Kahn condition: Let m be the # of control variables
and n the number of eigenvalues outside the unit circle. Then,

m = n =⇒ unique solution;
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Problem 3
Question 5: Solution

Blanchard-Kahn condition: Let m be the # of control variables
and n the number of eigenvalues outside the unit circle. Then,

m = n =⇒ unique solution;

m > n =⇒ multiple solutions; and
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Problem 3
Question 5: Solution

Blanchard-Kahn condition: Let m be the # of control variables
and n the number of eigenvalues outside the unit circle. Then,

m = n =⇒ unique solution;

m > n =⇒ multiple solutions; and

m < n =⇒ no solution.
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Problem 3
Question 5: Solution

Blanchard-Kahn condition: Let m be the # of control variables
and n the number of eigenvalues outside the unit circle. Then,

m = n =⇒ unique solution;

m > n =⇒ multiple solutions; and

m < n =⇒ no solution.

Here, we have m = 1. Will need to look at the eigenvalues to find
n.
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Problem 3
Question 5: Solution

eigenvalues: Let γ1 and γ2 represent the eigenvalues of matrix A
(defined in previous question). An eigenvalue γ solves

|A− γI | = 0

⇐⇒

󰀏󰀏󰀏󰀏󰀏󰀏

1− γ 1
φ

κ 1
β
+ κ

φ
− γ

󰀏󰀏󰀏󰀏󰀏󰀏
= 0

⇐⇒ γ2 −
󰀕
1 +

1

β
+

κ

φ

󰀖
γ +

1

β
= 0
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Problem 3
Question 5: Solution

Let f (γ) = γ2 −
󰀓
1 + 1

β
+ κ

φ

󰀔
γ + 1

β
and note that
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Problem 3
Question 5: Solution

Let f (γ) = γ2 −
󰀓
1 + 1

β
+ κ

φ

󰀔
γ + 1

β
and note that

f (0) = 1
β > 0.
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Problem 3
Question 5: Solution

Let f (γ) = γ2 −
󰀓
1 + 1

β
+ κ

φ

󰀔
γ + 1

β
and note that

f (0) = 1
β > 0.

f (1) = −κ
φ < 0.
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Problem 3
Question 5: Solution

Let f (γ) = γ2 −
󰀓
1 + 1

β
+ κ

φ

󰀔
γ + 1

β
and note that

f (0) = 1
β > 0.

f (1) = −κ
φ < 0.

f (γ) is a parabola with a min at 1
2 + 1

2β + κ
2φ > 1, so

󰀃
0, f (0)

󰀄
and󰀃

1, f (1)
󰀄

lie on its decreasing side. Thus, γ1 > 1 and γ2 ∈ (0, 1),
i.e., n = 1 .
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Problem 3
Question 5: Solution

The Blanchard-Kahn condition for a unique solution is satisfied
since m = n.
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Problem 3
Question 5: Solution

The Blanchard-Kahn condition for a unique solution is satisfied
since m = n.

For reference,

γ1,2 =
1

2

󰀳

󰁃1 +
1

β
+

κ

φ
±

󰁶󰀕
1 +

1

β
+

κ

φ

󰀖2

− 4

β

󰀴

󰁄 .
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Problem 3
Question 6

6. Solve for the saddle path using the Blanchard-Kahn method.
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Problem 3
Question 6: Solution

If γ is an eigenvalue, its eigenvector v solves

(A− γI ) v = 0

⇐⇒

󰀳

󰁃
1− γ 1

φ

κ 1
β
+ κ

φ
− γ

󰀴

󰁄

󰀳

󰁃
v1

v2

󰀴

󰁄 = 0
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Problem 3
Question 6: Solution

If γ is an eigenvalue, its eigenvector v solves

(A− γI ) v = 0

⇐⇒

󰀳

󰁃
1− γ 1

φ

κ 1
β
+ κ

φ
− γ

󰀴

󰁄

󰀳

󰁃
v1

v2

󰀴

󰁄 = 0

Let v1 = 1. Then, from the 1st equation, v2 = φ (γ − 1). Thus, the
eigenvectors are of the form

v =

󰀣
1

φ (γ − 1)

󰀤
.
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Problem 3
Question 6: Solution

The matrix of eigenvectors is then

Q =

󰀳

󰁃
1 1

φ (γ1 − 1) φ (γ2 − 1)

󰀴

󰁄

with inverse

Q−1 =
1

φ (γ2 − γ1)

󰀳

󰁃
φ (γ2 − 1) −1

−φ (γ1 − 1) 1

󰀴

󰁄
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Question 6: Solution

Let yt = Q−1xt ⇐⇒ xt = Q yt . The decoupled system is then

󰀳

󰁃
y1,t+1

y2,t+1

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
≡yt+1

=

󰀳

󰁃
γ1 0

0 γ2

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
≡Λ

󰀳

󰁃
y1,t

y2,t

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
≡yt

.
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Problem 3
Question 6: Solution

Iterating forward the 1st equation (corresponding to γ1 > 1):

y1,t = γ−1
1 y1,t+1

= γ−2
1 y1,t+2

...

= lim
j→∞

γ−j
1 y1,t+j

= 0,

where we assume that the TVC requires convergence to the SS,
so lim

j→∞
y1,t+j = 0.
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Problem 3
Question 6: Solution

Finally, going back to the original coordinates (i.e., xt = Qyt ):
󰀳

󰁃
kt

qt

󰀴

󰁄 =

󰀳

󰁃
1 1

φ (γ1 − 1) φ (γ2 − 1)

󰀴

󰁄

󰀳

󰁃
0

y2,t

󰀴

󰁄
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Problem 3
Question 6: Solution

Finally, going back to the original coordinates (i.e., xt = Qyt ):
󰀳

󰁃
kt

qt

󰀴

󰁄 =

󰀳

󰁃
1 1

φ (γ1 − 1) φ (γ2 − 1)

󰀴

󰁄

󰀳

󰁃
0

y2,t

󰀴

󰁄

Plugging the 1st equation (kt = y2,t ) into the second one
(qt = φ (γ2 − 1) y2,t ), we obtain

qt = −φ (1− γ2) kt .
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Problem 3
Question 7

7. Solve for the optimal dynamics of kt .
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Problem 3
Question 7: Solution

Substituting the optimal qt into the 1st eqn. of the original system:

kt+1 = kt +
1
φ
qt = kt − (1− γ2) kt ⇐⇒ kt+1 = γ2kt .
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Problem 3
Question 7: Solution

Substituting the optimal qt into the 1st eqn. of the original system:

kt+1 = kt +
1
φ
qt = kt − (1− γ2) kt ⇐⇒ kt+1 = γ2kt .

γ2 ∈ (0, 1) =⇒ kt → 0 monotonically, i.e., Kt monotonically
converges to its steady state level.
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Problem 3
Question 8

8. Draw a phase diagram.
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Problem 3
Question 8: Solution

Starting from the log-linearized system:
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Problem 3
Question 8: Solution

Starting from the log-linearized system:

kt+1 = kt +
1
φqt ⇐⇒ ∆kt+1 =

1
φqt .
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Problem 3
Question 8: Solution

Starting from the log-linearized system:

kt+1 = kt +
1
φqt ⇐⇒ ∆kt+1 =

1
φqt .

qt+1 = κ kt +
󰀓

1
β + κ

φ

󰀔
qt ⇐⇒ ∆qt+1 = κ kt +

󰀓
1
β + κ

φ − 1
󰀔
qt .
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Problem 3
Question 8: Solution

Starting from the log-linearized system:

kt+1 = kt +
1
φqt ⇐⇒ ∆kt+1 =

1
φqt .

qt+1 = κ kt +
󰀓

1
β + κ

φ

󰀔
qt ⇐⇒ ∆qt+1 = κ kt +

󰀓
1
β + κ

φ − 1
󰀔
qt .

Thus, the iso-lines are qt = 0 and qt =
κ

1− 1
β
−κ

φ

kt .
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Problem 3
Question 8: Solution

kt

qt
Iso-lines
Saddle path


