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1. Find the steady state of the system. Is it a source, a sink,
or a saddle point?
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@ The only solution is z = 0.
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1—-Xx =05

— =0
-1 15-A

— AN 25\ +1=0

@ Solving,

A =2 and |\ =05/

@ |\ | >1and|)] <1 = SSis a saddle point.
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2. Draw the iso-lines and show with arrows the directions
of the trajectories.
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@ From the second equation:
Lo 41 = — T+ ]..5x2’t <

Amp i1 = —x1 + 0.510 |
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T+l = T1¢ — 0.5.’[2715 g AILH_l = —0.5772’,5 .

Problem 1

@ From the second equation:

Lo 41 = — T+ ]..5x2’t <~ A.’L‘Q’t_i_l =21+ 0.5372’15 .

@ Thus, the iso-lines are Az 1 =0 «— and

A.I'Zt_;,_l =0 < T2y = 2x17t .

@ Moreover, |Azy 141 20 <= 1 S

0

Al‘27t+1 2 0 <— Lo ¢ 2 21:1715

and
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3. Decompose matrix A and show the eigenvectors on the
phase diagram.
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e For \y = 2:

Sojvt=(1 -2)|
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e For A\ =0.5:
0.5 —-0.5 U1
=0
-1 1 (%)
<~ Uy = U1,

So v2=(1 1)
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@ Finally, the decomposition of matrix A is

onot [T (2 0N
QAT =5, ) o 0s)\o 4
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4. Consider 1 = (1 0)’, compute y, of the corresponding
decoupled system, and show dynamics for periods ¢ = 1
and ¢t = 2 on the phase diagram.
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Oa’,‘leyl:

2 0
oy =Ay =
0 0.5
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Consider the investment problem from Problem Set 1: given initial
value of capital K, a firm chooses investment path {/,},°, to
maximize profits

subject to the capital law of motion
Kt+1 = (]_ - 5)Kt + It.

Assume that 6 = 0 and define Q; = 57\, where )\, is the Lagrange
multiplier from the optimization problem.
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1. Write down the (non-linear) system of equations for K; and @;.
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[1:] —p! (1 + ¢>ft) + A =0
Problem 3 t
= 1+¢ L _ Q
K
12
[Kt+1] _)\t + 5t+1 aAKto_j__ll + ? t-;l + )\t+1 =0
2 Kt+1

a1, 01
<~ [ [aAKtHl + §Kt;1 + Q1| = Q
t+1
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@ From the capital law of motion: I, = K;,; — K;. Substituting into
Frotlem S the FOC:

Kt+1

[£] 1+¢ — ¢ =0

Ko — Kpi1)?
[Kiq1] BlaAKY, L4+ %( t+2K2 1) + Q1| = @
41
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2. Determine the state variables and the control variables in
this system.
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@ K, is a state variable.

@ (), is a control variable.



Problem 3

Question 3

Class #2

EC400: DPDE

Problem 3

3. Solve for the steady state.
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@ Imposing SSin[I]: Q =1+¢% —¢ «— Q=1|

@ Imposing SS in [K;,,] and using Q = 1:

1=plaAK* 1+¢( K) +1} = K:(M)la.
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4. Log-linearize the equations for K; and @, around the steady
state. Denote the log deviations with small letters &, and ¢;.
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@ Let ¢, = ln( t ) and note that

<Q||<©
N—

Q= Q% = Qeln(%) =Qe" = Q(1+q)=1+q).
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EC400: DPDE (*] S'm”arly, let kt =In (%) and note that

o Ky=Kelt =~ K (1+ k).

Problem 3

Kiv1 _ Keft+l _  kyii—ke
oTt——l-{eT—e”l t~1+kt+1—kt.

2 — 2
o [ Kit2—Kit1 _ Keft+2 1) = (ekt+2—kt+1 — 1)2
Kiy1 K ekttt

~ (L4 kpo — krr — 1)* = (kg — k).

° ozAKf‘+_11 =aA (Kek“rl)a_l = qAK* telo=Dhin

~ aA;_};ﬁ <1 + (a— 1)kt+1) = % — k ki1, where k = (l_a)’#
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[1:] Il+qg=14+¢(1+ k1 — k) — ¢
1
<:,>kt+1=kt+

g%

1 _
[Kiy1] 1+q¢=p Tﬂ — Kk + g (ki — ker1)® + 14 g
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g (kyyo — kt+1)2 and plugging in the expression for &, from [/,],
we arrive at the system
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[1:] ki1 = ke + %Qt
1-p
(K] I+q =27 [T — K (kt + —Qt) +1+ Qt+1:|
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@ Thus, the (log-linearized) dynamic system can be written as

K1 I ki
Gt+1 kosts) \a
——

=Ti41 =A =
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5. Is the Blanchard-Kahn condition for a unique solution satisfied?
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FOA00s DEDE @ Blanchard-Kahn condition: Let m be the # of control variables
and n the number of eigenvalues outside the unit circle. Then,

Problem 3
@ m = n = unique solution;

e m > n = multiple solutions; and

@ m < n = no solution.

@ Here, we have m = 1. Will need to look at the eigenvalues to find
n.
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|A—~I]=0
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o Letf(7) =7*— (1+4+%) 7+ and note that

Problem 3

® f(v) is a parabola with a min at 5 + 55 + 55 > 1, s0 (0,/(0)) and
(1,£(1)) lie on its decreasing side. Thus, v; > 1 and 72 € (0, 1),

e [n=1]
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@ The Blanchard-Kahn condition for a unique solution is satisfied
Problem 3 SInCG m = n.

@ For reference,

1 1 & 1 x\? 4
71,225 1+E+$i\/(1+g+$> —E
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6. Solve for the saddle path using the Blanchard-Kahn method.
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@ If v is an eigenvalue, its eigenvector v solves
(A=~I)v=0
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Problem 3
1=~ é Uy
= =0
1 K
K 3 + P Y Vo

@ Let v; = 1. Then, from the 1% equation, v, = ¢ (v — 1). Thus, the
eigenvectors are of the form
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Problem 3 ]. 1
Q =
dp(n—1) ¢(r2—1)

with inverse
0 — 1 p(r—1) -1
¢ (2 =) —dp(pn—1) 1



Problem 3

Question 6: Solution

Class #2

EC400: DPDE

Problem 3 @ Lety, = Q 'z, « =z, = Qy,. The decoupled system is then

Y1,t+1 7 0 Y1t
Y2, t+1 0 7 Yot
—_— ~~ S N———

=Yitr1 =A =yt
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—1
Y6 =71 Yi,t11

Problem 3 _9
=N Y42

1 -7
= lim v, 7 Y1044
]—}OO

=0,

where we assume that the TVC requires convergence to the SS,
SO hm yl,t+j =0.
J—00
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@ Finally, going back to the original coordinates (i.e., z; = Qu;):

Probler 3 (/ft) ( 1 1 0
& - ¢(n—1) <Z5(721)) (Z/z,t)

@ Plugging the 15t equation (k, = 1) into the second one
(¢t = ¢ (y2 — 1) 12.1), We obtain

Qt=—¢(1—72)kt-
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7. Solve for the optimal dynamics of ;.
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Prafiem s @ Substituting the optimal ¢, into the 1%t egn. of the original system:

kt—i—l:kt‘i_é%:kt_(l_fyﬂkt <~ -

@ 1, € (0,1) = k — 0 monotonically, i.e., K; monotonically
converges to its steady state level.
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8. Draw a phase diagram.
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@ Starting from the log-linearized system:

® fpy1 =kt + éqt — |Akip = %qt .

° Qt+1="€kt+<%+%) g < Aqt+1=:‘£kt+(%+

K

¢
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@ Starting from the log-linearized system:

Problem 3

® fpy1 =kt + éqt — |Akip = %qt .

° qt+1=/£kt+<%+%> g = Aqt+1=mkt+(%+%—1>qt.

x

@ Thus, the iso-lines are | ¢; = 0 |and| ¢;

Ky |.

|
o=
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