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Suppose that an agent gets utility not only from consumption over T'
Froblem 1 periods of her life, but also from leaving a bequest to its descendants

T
> B (Cy) +nB" In (Bryy)
t=0

and is subject to a standard budget constraint

Biy1 = RB; + Y, — C;.



Problem 1

Question 1

Class #1

EC400: DPDE

Problem 1

1. Is the additional constraint By, > 0 discussed in the lecture
binding in this case?
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@ Br.1 > 0is not binding since

U ({Ot}tT:O,BTH) s, T = By, > 0.

T+1_>0
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2. Derive the optimality conditions and provide intuition for the
terminal condition.
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@ Lagrangian:

T

T
L=3 8" (C)+ns" n(Bri1)+) A (RBi + Yy — Cp — Bipa)+pBra
t=0 t=0

where £ =L <{Ct, By, )\t};[:o AR TS Rﬂm)-
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[Ci] B =\ =0, Vie{0,..., T},
Gy
[Bt+1] _>\t+R>\t+1:07 VtE{O,,T—l},
1

[Br1] ns” —Ar =0.

Bryy



Problem 1

Question 2: Solution

Class #1

EC400: DPDE

@ Solving:

Problem 1



Problem 1

Question 2: Solution

Class #1

EC400: DPDE o Solving:

Problem 1

o Euler equations: From [C;] and [B;41],

vte{o,...,T -1}, 5’*0%2}%”1#“ < | Cy41 = BRC; .



Problem 1

Question 2: Solution

Class #1

EC400: DPDE

@ Solving:

Problem 1

o Euler equations: From [Ct] and [By41],

vte{o,...,T -1}, p'& _Rﬁt+1cj+1 < | Cy41 = BRC; .

e Terminal condition From [Ct] and [BT+1],

"or =T pr = | Bra =nCr|

Briq



Problem 1

Question 2: Solution

Class #1

EC400: DPDE ° Solving:
Problem 1

o Euler equations: From [Ct] and [By41],

vte{o,...,T -1}, p'& _Rﬁt+1cj+1 < | Cy41 = BRC; .

e Terminal condition From [Ct] and [BT+1],

"or =T pr = | Bra =nCr|

Briq

o Intuition for the terminal condition: In the last period, agent
equalizes marginal utility from spending money on consumption
and leaving it as a bequest.
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3. Solve for the optimal consumption C, and bequest By,
assuming By =0and Y, =Y.
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EC400: DPDE @ lterating the budget constraint forward:

Problem 1

T
> R(C,—Y)+ R "Bry =0.

t=0
@ From the optimality conditions: | C; = (R3)"' Cy |for t € {0,..., T}
and BT+]_ =n (Rﬁ)T Co .

@ Substitute into the intertemporal BC and solve for C, to obtain:

_ 1-58 R—RT
Co = e 1 Y
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4. What happens to the optimal bequest when T'— oo if SR = 1?
Explain.
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@ Taking the limit as 7' — oo on both sides of the expression for
Problem 1 Bry1 and using the assumptions <1, R>1,and SR=1:
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@ Taking the limit as 7' — oo on both sides of the expression for

it L Bry1 and using the assumptions <1, R>1,and SR=1:
1-— R—-0
Brii — n B

T—o0 1+0+OR—1
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Question 4: Solution

@ Taking the limit as 7' — oo on both sides of the expression for
Bry1 and using the assumptions <1, R>1,and SR=1:

1-5 R—-0

Bro o o 0 R -1
R—1 R
:n——
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Question 4: Solution

@ Taking the limit as 7' — oo on both sides of the expression for
Bry1 and using the assumptions <1, R>1,and SR=1:

1-3 R-0
B
T T Y0+ 0R -1
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Problem 1 o Intuition:

e | Utility from the bequest

is isomorphic to

utility from consumption in a period far in the future ‘

e SR =1 = agent perfectly smooths consumption (i.e.,
Cy = C Vt) and also leaves a positive bequest.
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Consider an agent with a CRRA utility

Problem 2 T -0
/ e_pt—ct — 1dt
0 l-0o
and a budget constraint
Bt =rB; — (i,

where labor income is zero, » = p, and By > 0.
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Problem 2

1. Show that the CRRA utility converges to u(C') = In (C) in the limit
o — 1. Focus on this limit for the rest of the problem.
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=In(a)a”,

@ Using LHospital’s rule and recalling that 4

Problem 2

-0
lim u(C) = lim u

o—1 o—1 1—0
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e lim u(C) = lim &
o1 o=l 1—o0
i —In(C) O
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Question 1: Solution

@ Using LHospital’s rule and recalling that & = In (a)a”,
) ) Cl—a -1
i (€)= lim ———"—
, _ l1—0o
T In(C)C
o—1 —1
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@ Alternatively, using the fact that z = ¢™ () and LHéspital’s rule,

ct7 -1
lim u(C) = lim ——
o—1 o—1 1—-0
) eln(le‘T) 1
= lim
o—1 1—-0

e(l—a’) In(C) _ 1

o—1 1—0
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Question 1: Solution

@ Alternatively, using the fact that z = ¢™ () and LHéspital’s rule,

lim u(C) =

o—1

cl-o—1

lim

e(l—a’) In(C) _ 1

1—0

—In(C) =) (C)
-1




Class #1

EC400: DPDE

Problem 2

Problem 2

Question 1: Solution

@ Alternatively, using the fact that z = ¢™ () and LHéspital’s rule,
ct7 -1

o—1
) eln(le‘T) 1
= lim
o—1 1—-0

= lim
o—1 1—0
LH —]n(C) e(l—o‘)ln(C)
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2. Write down the Hamiltonian and derive the optimality conditions.
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@ Hamiltonian:
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Ht = e_pt In (Ot) + )\t (T'Bt — Ot)

Problem 2

@ Maximum principle:

oH, I
[Ct] 8C’t =0 < e Ct /\t =0
[Bi] Oy = _}\t = rA\ = _}\t

0B,
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o From [Ct]: )\t = ea:t — _}\t = e;,jt [p—l— %] .
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Question 2: Solution

@ Optimality conditions:

e From [Ct]: A = e - _}\t =

Ct

e Plugging into [B.]:

e Pt e Pt

e = o+ 8] = (r=p)

Ct = Coe('r_p)t ;
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Problem 2

@ From [Ct]: At = e;:t — _}\t = e;,jt [p—l— %] .

e Plugging into [B.]:

—rt G _

Gy

= Coe('r_p)t ;

t
r<s :ep [p+ } = (r-p=¢=0=

e Using the assumptlon r= ’ Ci=CyVtelo,T] ‘
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Problem 2

o From[Ci]: |\ = 4| = | —Ay = & [p—i— %] .

e Plugging into [B.]:

= Coe('r_p)t ;

re;ft = ‘o= i [p+ } = (r—p)—%—o = | C}
e Using the assumptlon r=p ’Ot CoVitel0,T] ‘

e Transversality condition:

ApBr =0 < eggtBT:O — .
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3. Obtain the intertemporal budget constraint and solve for the
optimal consumption.
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O BERE integrating on both sides and evaluating at ¢t = T

Problem 2 e_rtBt — TC_TtBt - —6_ﬁ Ct

<~ d[e_ﬁBt] == —e_rtC'tdt

t
«— ¢ "B, =B, —/ e " Cids
0
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Class #1 @ Multiplying by e~ on both sides of the flow BC B, = B, — C,,
O BERE integrating on both sides and evaluating at ¢t = T

Problem 2 e_rtBt — TC_TtBt - —6_ﬁ Ct

<~ d[e_ﬁBt] == —e_rtC'tdt

t
«— ¢ "B, =B, —/ e " Cids
0

T
— ¢ "By =B, —/ e " Cyds.
" 0
0by TVC
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@ Using

CSICOVSE[O,T

]

and solving for Cp:
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Question 3: Solution

@ Using

CSICOVSE[O,T

| |and solving for Cy:

T
/ e " CodS = BO
0
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T
/ e " CodS = BO
0

Problem 2

1 T
— (O [——e‘“}
T

s=0
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,C400: ; .
Problem 2 / e_TS COdS N BO
0
1 T
<: CO |:__€—7‘$:| —= BO
r s=0
B,
<— (= 0

1—e T



Problem 2

Question 3: Solution

Class #1 ) USlng Os = CO Vs < [O, T

| |and solving for Cy:

EC400: DPDE

Problem 2

— [——e‘“}

@ Finally, using -

G =

1—ce€

T
/ e " CodS = BO
0

1 T
r s=0
T'BO
= G=1"7
C,=CoVtelo, T):
By
P =Vt e |0, T].



Problem 2

Question 4

Class #1

EC400: DPDE

Problem 2

4. Suppose the agent can choose not only consumption path, but
also the length of life 7. Assuming utility is zero for ¢t > T and
the agent cannot leave any debt, solve for the optimal value of 7.
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@ Substituting the optimal consumption path into the objective
function and integrating:

Problem 2 T —pt T
/0 e’ In (1 — e—pT)dt In(pBy) —In(1—e"") o

EC400: DPDE
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@ Substituting the optimal consumption path into the objective
function and integrating:

Problem 2 T —pt T
/0 e’ In (1 — e—pT)dt In(pBy) —In(1—e"") o

e_pT+1>
p )

EC400: DPDE

= [ln (pBp) —In (1 — e_pT)} ( —
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@ Substituting the optimal consumption path into the objective
function and integrating:
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Rl (e bl
- [m (pBo) —In (1 - e_pTﬁ ( N e_p2+ 1>'

@ The problem is:

max [ln (pBy) —In (1 — e’pT)] (1 - e’pT).

2
TeR?
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@ Taking FOC and solving for 7%, we find:

Problem 2

—% In(1—pBye™) if pBye ! <1
T = ,
+0oo otherwise

where —pBye™' <0 = In(1 — pBye™!) < 0.
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5. Derive the optimality condition for T using a perturbation
argument.
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@ Starting from the, suppose the agent increases 7' by d7 = A > 0.

e Given (, = 0, the agent spends C7A over this period.
e This requires a proportionate increase in Br.

@ According to the BC:
1
BT = GTTBO — ; (1 - G_TT) CT
1
= dBr=¢"By—=(1—-e"")dCr
~—~ r
CrA
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Question 5: Solution

@ Starting from the, suppose the agent increases 7' by d7 = A > 0.

e Given (, = 0, the agent spends C7A over this period.
e This requires a proportionate increase in Br.

@ According to the BC:

1
BT = GTTBO — ; (1 - G_TT) CT
1
= dBr=¢"By—=(1—-e"")dCr
—— r
CrA
A
< dCpr = — rOr

erT —1°
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Question 5: Solution

@ Thus,

CrA
dCt = - erT_l

vt e [0, T
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@ Thus,

Problem 2

dCy = L& vt e [0, T

e Given r = p, the net change in utility is

T
e PTu(Cr)A +/ e P/ (Cr)dCrdt = e—PT[ln(cT) - 1]A.
0
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pBo

e R
1—erT
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du=0 <= In(Cr) =1 < Cr=e.

Problem 2

e Finally, combining with our previous expression for C'r,

pBo

e R
1—erT

— e T =1—pBye?
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@ Under the interior solution, we must have
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du=0 <= In(Cr) =1 < Cr=e.

Problem 2

e Finally, combining with our previous expression for C'r,

pBy .
1—erT
— e T =1—pBye?

1
< T =——In(l—-pBye ).
p
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E

Problem 3

Consider the following investment problem. Given initial value of
capital K, a firm chooses investment path {/,},°, to maximize profits

subject to the capital law of motion
Kt+1 = (1 - (S)Kt + Its

where A, is the firm’s productivity, o € (0,1), ¢ > 0 stays for the capital
adjustment costs, and § € (0, 1) is the depreciation rate.
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Problem 3

1.  Write down the Lagrangian and take the first-order conditions.
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L‘—iﬂt[/l K — 1 —?[—3]+§:A (L= 0K, + Iy — Ky
_t:O t4i¢ t 2Kt o t t t t+1
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e @ Lagrangian:

EC400: DPDE

2 o0
L= Zﬂt [A Ko — I, — %[E] +3 N [(1 — ) K, + I — KM]
t=0
e FOC:
1] —ﬂf(1+¢%) F A =0

¢ I
2 K2

[Ki] =X+ 87 (aAt+1K 1 T o ) +A1(1=0) =0
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Problem 3

2. Use afinite-period version of the model to derive the
transversality condition.
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DEAT, DIFIELD @ In a finite-period version of the model, we add that the firm

cannot leave a negative stock of capital, i.e., K1 > 0.

@ The Lagrangian of this problem is

Problem 3

T 2 T
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t=0 t=0
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ZGLID ) e @ In a finite-period version of the model, we add that the firm

cannot leave a negative stock of capital, i.e., K1 > 0.

@ The Lagrangian of this problem is

Problem 3

T 2 T
L=>p [Ath‘—It—%}r(—tj +Y N [(1—6)Kt+[t—[(t+1] K
t=0 t=0

® The FOC Wrt Kry1is —Ar+p=0 <= [p=Ar|
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@ The complementary slackness condition can then be written as
Problem 3
i =0 = ke =0,

@ By analogy, the transversality condition in the infinite-horizon
model is tlim MK 1 =0.
— 00
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3. Derive the analog of the Euler equation, i.e. the optimality
condition for capital and investment that does not include J,.
Interpret this equation using the perturbations of the optimal
path.

Problem 3
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@ Combining [[;] and [K;.1]:

Problem 3

5t(1 + c;ﬁi) =B ady K2+ ¢ I +(1-0)B"* 1+ ¢—It“
T T o K2 Kit1
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@ Combining [[;] and [K;.1]:

Problem 3

¢ I
5t(1+qﬁKt> Bt+ (aAt+1Kt+1 L@ t+1>+( )ﬁf+1(1+¢Kt:;1l>

= 1“5% ﬁ(aAtHKm +3 t+1>+(1—5)5<1+¢£+1>

t+1
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@ Perturbation argument: Suppose the firm increases I; by
dl; = A > 0, returning to the optimal trajectory in ¢ + 2.

Problem 3

0 dl; = A = dypy = (1+¢4) dl; = (14 ¢4) A > 0, where
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@ Perturbation argument: Suppose the firm increases I; by
dl; = A > 0, returning to the optimal trajectory in ¢ + 2.

Problem 3

o d=A = dzpt:(1+¢}(—1)d1t=(1+¢1§—3)A>0,where
¢t—It+2Kt

o d; = A => th+1 A. Thus,
d7Tt+1 = BKttill th+1 = aAtJrl t+1 A > 0, where m; = Atha_
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e Returning to the optimal trajectory in ¢ + 2 means leaving Ko
uncahanged, i.e., dK; 2 = 0. Therefore,

Problem 3 th+2 = (1 — 5) dKH_l +dIt+1 <~ dIt-H = —(1 — 5)A < 0.
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e Returning to the optimal trajectory in ¢ + 2 means leaving Ko
uncahanged, i.e., dK; 2 = 0. Therefore,

Problem 3 th+2 = (1 — 5) dKH-l +dIt+1 <~ dIt-i—l = —(1 — 5)A < 0.
T e

[+ th-i-l = A and dIt+1 = ( 5)A =>
A1 = —(1 = 0) (1 + L) A §§;1A<0

Ky

e Combining all these costs and benefits and requiring that the
perturbation is not profitable, we get the Euler equation.



Problem 3

Question 4

Class #1

EC400: DPDE

Problem 3

4. Rewrite the capital law of motion for an arbitrary length of period
A. Obtain the continuous-time version of the optimization problem.
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Problem 3

Question 4

Class #1

@ Note that K, is a stock variable while [, is a flow, just as
depreciation § K; and profits A, K.

EC400: DPDE

@ Let 5 =e". Then,
Problem 3

Kt+A - (1 - 5A)Kt + [tA
< Kt+A — Kt - (It - (SKt)A

. Kua—K
- Kt:ilggoT—]t—(SKt



Problem 3

Question 4

Class #1

EC400: DPDE

Problem 3

@ The Objective function is

0 12
-t AK“—I—?—t dt.
/0 ‘ ( e 2Kt)



Problem 3

Question 5

Class #1

EC400: DPDE

Problem 3

5. Define the Hamiltonian and write down the optimality conditions.
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cless @ Hamiltonian:
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Problem 3

Question 5

cless @ Hamiltonian:
Ht = 6_” <Atha — -[t — —_> + )\t(-[t — (SKt),

where )\, is the co-state variable.

Problem 3

@ Optimality conditions:

OH,

G

I
=0 < —e‘”(1+¢—t) +X =0
K

6Ht . ., o 12 ]
[Kt] 8—& = _)\t <~ € t(OéAth 1 + ¢K—tt2> — 5/\15 = —)\t



Problem 3

Question 6

Class #1

EC400: DPDE

Problem 3 6. Show that the same continuous-time optimality conditions
can be obtained directly from the optimality conditions in
discrete time.



Class #1

EC400: DPDE

Problem 3

Problem 3

Question 6

@ Rewriting the FOC of the discrete-time problem for am arbitrary length

of period A,
I,
—rt t
_ —t A =
(L] e (1+¢Kt)A+At 0
= —e‘”‘(1+¢£) +X =0
K, !
[Ki41]
—r(t+A IR N
A+ e TR QA AKPTN 4+ = —H2 A+ A A (1= 0A) =0
2 K2, A

I? A -A
_r(t+A)< A KoL ¢ 1iia > Y _ _AttA ¢
< € QA A + t+A
t+A 2 Kt2+A A



Problem 3

Question 6

Class #1

EC400: DPDE

Problem 3

@ Finally, taking limits as A — 0, we obtain the same optimality
conditions from question 5.
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Problem 1, Question 3: Details

Class #1 Write the BC for t € {0,..., T} as B, = R~ (B;41 — Y; + C;), evaluate at ¢ = 0,
Seornenaney  and iterate forward:

: By=R1'(B1— Yo + Gy)
Appendix
=R [RT(By— Y1+ Cy) — Yo+ Gy
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Problem 1, Question 3: Details

Class #1 Write the BC for t € {0,..., T} as B, = R~ (B;41 — Y; + C;), evaluate at ¢ = 0,
Seornenaney  and iterate forward:

) By=R™' (B — Yo+ Gp)
Appendix
=R 'R (B = Yi+ 1) — Yo + G
=R ?By+R2(C,— Y1)+ R (Cy— Vo)
—R2[R"(Bs— Yo+ Co)] + R2(Ch — Y1) + R (Co — Yo)

=R 3B3+R3(Cy— Yo)+R2(C,— Y1)+ R (Co— Y)



Problem 1, Question 3: Details

Class #1 Write the BC for t € {0,..., T} as B, = R~ (B;41 — Y; + C;), evaluate at ¢ = 0,
Sennenas  and iterate forward:

By=R (B, — Yo+ Cp)

P
=R 'R (B — Y1+ C1)— Yo+ G
=R 2B+ R *(C,— Y1)+ R (Cy— Yo)
=R P?[R'(Bs— Yo+ G)|+ R?(C1— Y1)+ R (Co — Yo)
=R PB3+ R 3(Co— Y2) + R2(C, — Y1)+ R (Cy — Vo)
. T

=R "R "Bria+ ) RTC - Y.
t=0
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Problem 1, Question 3: Details

Class #1

EC400: DPDE

@ Thus,
T

RBy=R "Bry+Y R '(Ci—Yy).
t=0

Appendix

@ Finally, use the assumptions | By = 0 and‘ Y;=YVte{0,...,T} ‘to obtain

T
0=R "Bra+Y R'(C-Y).
t=0
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Problem 1, Question 3: Details

class 7 @ Just iterate backward the Euler equation:
EC400: DPDE
Ct = Rﬂct—l
Appendix
= Rp (Rﬂ Ct—2)
= (RB)* Gy

= (RB)* (RBC_s)
= (RB)’ Cy_3



Problem 1, Question 3: Details

et @ Just iterate backward the Euler equation:
Cy = RBCi—1
= RB(RBCi_2)
= (RB)? C_y
= (RB)? (RBC;—3)

= (RB)’ Cy_3

EC400: DPDE

Appendix

= (RB)" C,_;.



Problem 1, Question 3: Details

e @ Just iterate backward the Euler equation:

Cy = RBCy_4
= RB(RAC)»)
= (RB)* Cis
= (RB)* (RBCy-s)
= (RB)* Crs

EC400: DPDE

Appendix

= (RB)' Ci—.

@ Finally, plug the resulting expression for C'r (Cp) into the terminal condition to
obtain Bry1 =1 (RB)" Co.
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Class #1 @ Plugging in the expressions for C; (Cp) and Br1 (Cp) into the budget constraint:

EC400: DPDE

Appendix R_ - CO + Z R~ CO - ] =0

T T
= 8T Co+Cody B —YDY R "=0
t=0 =
1—pTt 1— R~(T+D)

T
-Y
< 0B Co+ Co - T A1




Class #1

EC400: DPDE

Appendix

Problem 1, Question 3: Details

@ Plugging in the expressions for C; (Cp) and Br1 (Cp) into the budget constraint:

R™' R~ 00+ZR ) Co—Y]|[=0

T T
= 8T Co+Cody B —YDY R "=0
t=0 =
1—pTt 1— R~(T+D)

T
-Y
< 0B Co+ Co - T A1

L-p™ + (1 -pnsT _ R - R(THY)
1-8 B R—1

<~ (o



Problem 1, Question 3: Details

Class #1 @ Plugging in the expressions for C; (Cp) and Br1 (Cp) into the budget constraint:

EC400: DPDE

Appendix R_ - CO + Z R~ CO - ] =0

T T
= 8T Co+Cody B —YDY R "=0

t=0
T 1— 5T+1 1— R—(T+1)
-y =0
< nB" Co+ Co - T A1
18T+l 4 (1— T R(1— R—(T+1)
— gl AT+ a-pmsT | R( )
1-p R—-1
1— _p-T
<— (Cp = A R-R Y.

1+nBT —(14n)BT+ R—1



Problem 2, Question 2: Details

Class #1
SCA00: DEDE @ Rewrite the differential equation
Appendix
C 1
Ft =(r—p) <= —=dC = (r—p)dt
t

and integrate on both sides to obtain

k+In(Cy) =9+ (r—p)t
— O, = Cyelrnrt,

where x and v are the constants of integration and Cy = e¥~*.
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Class #1

EC400: DPDE . FOC

—pe—rT"

1—erT”

Appendix

{1 - ef”T*] + [ln (pBo) —In(1 — e P77 perT" =0

— In(1—e?T") =In(pBye™t)

e T =1—pBye !

1
= T = > In(1— pBye™ 1),



Problem 2, Question 4: Details

Class #1
@ FOC:
EC400: DPDE

—pe—rT"

Appendix
1—erT”

{1 - ef”T*] + [ln (pBo) —In(1 — e P77 perT" =0
— In(1—e?T") =In(pBye™t)
e T =1—pBye !

1
= T = > In(1— pBye™ 1),

which is well-defined as long as 1 — pBye™! > 0 <= pBye ! < 1.



Problem 2, Question 5: Details

Class #1
T —pt O\
_ € ror
du=e?TIn(Cpr)A - | —
u=e T (OnA= J e

EC400: DPDE

Appendix
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Class #1
T e=rt rOrA
0 CT €Tt -1

EC400: DPDE

du=e?TIn(Cr)A —
Appendix
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rA  1—ePT
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Problem 2, Question 5: Details

Class #1

o T =t rOrA

EC400: DPDE _ € ror
du=e*TIn(Cr)A— | ——
u=e n(Cr) /O Cr e —1

Appendix

rA  1—ePT

—pT
= € P ln(CT)A_ erT_l P

_ o pT
= e *TIn(Cr)A — %A
~—rT

e
e T (1— e 0T

—pT
= eI (Cr)A - ———

_ e—PT[ln(cT) - 1]A.



