EC400: DPDE

Class #1

Pinjas Albagli p.m.albagli@lse.ac.uk

September 2024

Contents

Class #1

EC400: DPDI

Problem 1

Problem 2

1 Problem 1

2 Problem 2

3 Problem 3

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem

Suppose that an agent gets utility not only from consumption over ${\it T}$ periods of her life, but also from leaving a bequest to its descendants

$$\sum_{t=0}^{T} \beta^{t} \ln \left(C_{t}\right) + \eta \beta^{T} \ln \left(B_{T+1}\right)$$

and is subject to a standard budget constraint

$$B_{t+1} = RB_t + Y_t - C_t.$$

Problem 1 Question 1

Class #1

EC400: DPD

Problem 1

Problem

Problem

1. Is the additional constraint $B_{T+1} \ge 0$ discussed in the lecture binding in this case?

Question 1: Solution

Class #1

EC400: DPD1

Problem 1

Problem 2

Problem

• $B_{T+1} > 0$ is **not binding** since

$$U\left(\left\{C_{t}\right\}_{t=0}^{T}, B_{T+1}\right) \underset{B_{T+1}\to 0}{\longrightarrow} -\infty \implies B_{T+1}^{*} > 0.$$

Problem 1 Question 2

Class #1

Problem 1

Derive the optimality conditions and provide intuition for the terminal condition.

Question 2: Solution

Class #1

EC400: DPD

Problem 1

Problem

Duebless

Lagrangian:

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} \ln (C_{t}) + \eta \beta^{T} \ln (B_{T+1}) + \sum_{t=0}^{T} \lambda_{t} (RB_{t} + Y_{t} - C_{t} - B_{t+1}) + \mu B_{T+1}$$

where
$$\mathcal{L} = \mathcal{L}\left(\left\{C_t, B_{t+1}, \lambda_t\right\}_{t=0}^T, \mu \mid \left\{Y_t\right\}_{t=0}^t, R, \beta, \eta\right)$$
.

Question 2: Solution

Class #1

Problem 1

FOC:

$$[C_t]$$

$$\beta^t \frac{1}{C_t} - \lambda_t = 0,$$

$$\forall t \in \{0, \ldots, T\},\,$$

$$[B_{t+1}]$$

$$-\lambda_t + R\lambda_{t+1} = 0,$$

$$-\lambda_t + R\lambda_{t+1} = 0, \qquad \forall t \in \{0, \dots, T-1\},$$

$$[B_{T+1}]$$

$$\eta \beta^T \frac{1}{B_{T+1}} - \lambda_T = 0.$$

Question 2: Solution

Class #1

EC400: DPDI

Problem 1

D. . . Ll

Problem 3

Solving:

Question 2: Solution

Class #1

EC400: DPDF

Problem 1

Droblom '

Problem

Problem :

Solving:

• Euler equations: From $[C_t]$ and $[B_{t+1}]$, $\forall t \in \{0, \dots, T-1\}$, $\beta^t \frac{1}{C_t} = R\beta^{t+1} \frac{1}{C_{t+1}} \iff C_{t+1} = \beta RC_t$.

Question 2: Solution

Class #1

Problem 1

Solving:

- Euler equations: From $[C_t]$ and $[B_{t+1}]$, $\forall t \in \{0, \dots, T-1\}, \ \beta^t \frac{1}{C_t} = R\beta^{t+1} \frac{1}{C_{t+1}} \iff \boxed{C_{t+1} = \beta RC_t}.$
- Terminal condition: From $[C_t]$ and $[B_{T+1}]$, $\beta^T \frac{1}{C_T} = \eta \beta^T \frac{1}{B_{T+1}} \iff B_{T+1} = \eta C_T$.

Question 2: Solution

Class #1

EC400: DPDE

Problem 2

Problem 3

Solving:

- Euler equations: From $[C_t]$ and $[B_{t+1}]$, $\forall t \in \{0, \dots, T-1\}$, $\beta^t \frac{1}{C_t} = R\beta^{t+1} \frac{1}{C_{t+1}} \iff \boxed{C_{t+1} = \beta R C_t}$.
- Terminal condition: From $[C_t]$ and $[B_{T+1}]$, $\beta^T \frac{1}{C_T} = \eta \beta^T \frac{1}{B_{T+1}} \iff B_{T+1} = \eta C_T$.
- Intuition for the terminal condition: In the last period, agent equalizes marginal utility from spending money on consumption and leaving it as a bequest.

Problem 1 Question 3

Class #1

Problem 1

Solve for the optimal consumption C_0 and beguest B_{T+1} assuming $B_0 = 0$ and $Y_t = Y$.

Question 3: Solution

Class #1

EC400: DPDE

Problem 1

Problem :

Problem

• Iterating the budget constraint forward:

$$\sum_{t=0}^{T} R^{-t} (C_t - Y) + R^{-T} B_{T+1} = 0.$$

details

Question 3: Solution

Class #1

Problem 1

• Iterating the budget constraint forward:

$$\sum_{t=0}^{T} R^{-t} (C_t - Y) + R^{-T} B_{T+1} = 0.$$

• From the optimality conditions: $C_t = (R\beta)^t C_0$ for $t \in \{0, ..., T\}$ and $B_{T+1} = \eta (R\beta)^T C_0$

Problem 1 Question 3: Solution

Class #1

roblem

roblem

• Iterating the budget constraint forward:

$$\sum_{t=0}^{T} R^{-t} (C_t - Y) + R^{-T} B_{T+1} = 0.$$

- From the optimality conditions: $C_t = (R\beta)^t C_0$ for $t \in \{0, \dots, T\}$
 - and $B_{T+1} = \eta \left(R\beta\right)^T C_0$.

• Substitute into the intertemporal BC and solve for C_0 to obtain:

$$C_0 = \frac{1-\beta}{1+\eta\beta^T - (1+\eta)\beta^{T+1}} \frac{R - R^{-T}}{R - 1} Y .$$

Problem 1 Question 4

Class #1

Problem 1

What happens to the optimal bequest when $T \to \infty$ if $\beta R = 1$? Explain.

Question 4: Solution

Class #1

EC400: DPDI

Problem 1

Problem

 $\mathsf{Problem}$

Question 4: Solution

Class #1

EC400: DPDI

Problem 1

Problem

Problem

$$B_{T+1} \xrightarrow[T \to \infty]{} \eta \frac{1-\beta}{1+0+0} \frac{R-0}{R-1} Y$$

Question 4: Solution

Class #1

EC400: DPDI

Problem 1

Problem :

Problem

$$B_{T+1} \xrightarrow[T \to \infty]{} \eta \frac{1-\beta}{1+0+0} \frac{R-0}{R-1} Y$$
$$= \eta \frac{R-1}{R} \frac{R}{R-1} Y$$

Question 4: Solution

Class #1

EC400: DPDI

Problem 1

Problem :

Problem

$$B_{T+1} \xrightarrow[T \to \infty]{} \eta \frac{1-\beta}{1+0+0} \frac{R-0}{R-1} Y$$
$$= \eta \frac{R-1}{R} \frac{R}{R-1} Y$$
$$= \eta Y.$$

Problem 1 Question 4: Solution

Class #1

EC400: DPDI

Problem 1

roblem 2

Problem 3

Intuition:

Problem 1 Question 4: Solution

Class #1

EC400: DPD

Problem 1

roblem

Problem

Intuition:

Utility from the bequest is isomorphic to
 utility from consumption in a period far in the future.

Problem 1 Question 4: Solution

Class #1

EC400: DPD

Problem 1

Problem

Droblom

Problem

Intuition:

Utility from the bequest is isomorphic to
 utility from consumption in a period far in the future.

• $\beta R = 1 \implies$ agent perfectly smooths consumption (i.e., $C_t = C \ \forall \ t$) and also leaves a positive bequest.

Class #1

EC400: DPDE

Problem

Problem 2

Problem

Consider an agent with a CRRA utility

$$\int_0^T e^{-\rho t} \frac{C_t^{1-\sigma} - 1}{1 - \sigma} \mathrm{d}t$$

and a budget constraint

$$\dot{B}_t = rB_t - C_t,$$

where labor income is zero, $r = \rho$, and $B_0 > 0$.

Problem 2 Question 1

Class #1

Problem 2

Show that the CRRA utility converges to $u(C) = \ln(C)$ in the limit $\sigma \to 1$. Focus on this limit for the rest of the problem.

Question 1: Solution

Class #1

EC400: DPDI

Problem

Problem 2

Problem

ullet Using L'Hôspital's rule and recalling that $rac{\mathrm{d} a^x}{\mathrm{d} x} = \ln{(a)} a^x$,

Question 1: Solution

Class #1

EC400: DPDF

Problem :

Problem 2

Problem

• Using L'Hôspital's rule and recalling that $\frac{\mathrm{d}a^x}{\mathrm{d}x} = \ln{(a)}a^x$,

$$\lim_{\sigma \to 1} u(C) \, = \, \lim_{\sigma \to 1} \frac{C^{1-\sigma} - 1}{1-\sigma}$$

Question 1: Solution

Class #1

EC400: DPDI

Problem :

Problem 2

Problem

• Using L'Hôspital's rule and recalling that $\frac{\mathrm{d}a^x}{\mathrm{d}x} = \ln{(a)}a^x$,

$$\lim_{\sigma \to 1} u(C) = \lim_{\sigma \to 1} \frac{C^{1-\sigma} - 1}{1 - \sigma}$$

$$\stackrel{\text{L'H}}{=} \lim_{\sigma \to 1} \frac{-\ln(C) C^{1-\sigma}}{-1}$$

Question 1: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem

• Using L'Hôspital's rule and recalling that $\frac{da^x}{dx} = \ln(a)a^x$,

$$\lim_{\sigma \to 1} u(C) = \lim_{\sigma \to 1} \frac{C^{1-\sigma} - 1}{1 - \sigma}$$

$$\stackrel{\text{L'H}}{=} \lim_{\sigma \to 1} \frac{-\ln(C) C^{1-\sigma}}{-1}$$

$$= \ln(C).$$

Problem 2 Question 1: Solution

Class #1

EC400: DPDE

Problem :

Problem 2

Problem

Question 1: Solution

Class #1

EC400: DPDF

Problem 1

Problem 2

Problem

$$\lim_{\sigma \to 1} u(C) = \lim_{\sigma \to 1} \frac{C^{1-\sigma} - 1}{1 - \sigma}$$

Question 1: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem

$$\lim_{\sigma \to 1} u(C) = \lim_{\sigma \to 1} \frac{C^{1-\sigma} - 1}{1 - \sigma}$$
$$= \lim_{\sigma \to 1} \frac{e^{\ln(C^{1-\sigma})} - 1}{1 - \sigma}$$

Question 1: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem

$$\lim_{\sigma \to 1} u(C) = \lim_{\sigma \to 1} \frac{C^{1-\sigma} - 1}{1 - \sigma}$$

$$= \lim_{\sigma \to 1} \frac{e^{\ln(C^{1-\sigma})} - 1}{1 - \sigma}$$

$$= \lim_{\sigma \to 1} \frac{e^{(1-\sigma)\ln(C)} - 1}{1 - \sigma}$$

Question 1: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem

• Alternatively, using the fact that $x = e^{\ln(x)}$ and L'Hôspital's rule,

$$\lim_{\sigma \to 1} u(C) = \lim_{\sigma \to 1} \frac{C^{1-\sigma} - 1}{1 - \sigma}$$

$$= \lim_{\sigma \to 1} \frac{e^{\ln(C^{1-\sigma})} - 1}{1 - \sigma}$$

$$= \lim_{\sigma \to 1} \frac{e^{(1-\sigma)\ln(C)} - 1}{1 - \sigma}$$

$$\stackrel{\text{L'H}}{=} \frac{-\ln(C) e^{(1-\sigma)\ln(C)}}{1 - \sigma}$$

16/4

Problem 2 Question 1: Solution

Class #1

EC400: DPDF

Problem 1

Problem 2

• Alternatively, using the fact that
$$x=e^{\ln{(x)}}$$
 and L'Hôspital's rule,

$$\lim_{\sigma \to 1} u(C) = \lim_{\sigma \to 1} \frac{C^{1-\sigma} - 1}{1 - \sigma}$$

$$= \lim_{\sigma \to 1} \frac{e^{\ln(C^{1-\sigma})} - 1}{1 - \sigma}$$

$$= \lim_{\sigma \to 1} \frac{e^{(1-\sigma)\ln(C)} - 1}{1 - \sigma}$$

$$\stackrel{\text{L'H}}{=} \frac{-\ln(C) e^{(1-\sigma)\ln(C)}}{-1}$$

$$= \ln(C).$$

Problem 2 Question 2

Class #1

Problem 2

Write down the Hamiltonian and derive the optimality conditions.

Question 2: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem

Hamiltonian:

$$\mathcal{H}_t = e^{-\rho t} \ln \left(C_t \right) + \lambda_t \left(r B_t - C_t \right)$$

Question 2: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem 3

Hamiltonian:

$$\mathcal{H}_t = e^{-\rho t} \ln \left(C_t \right) + \lambda_t \left(r B_t - C_t \right)$$

• Maximum principle:

$$[C_t]$$

$$\frac{\partial \mathcal{H}_t}{\partial C_t} = 0 \iff e^{-\rho t} \frac{1}{C_t} - \lambda_t = 0$$

$$[B_t]$$

$$\frac{\partial \mathcal{H}_t}{\partial B_t} = -\dot{\lambda}_t \iff r\lambda_t = -\dot{\lambda}_t$$

Problem 2 Question 2: Solution

Class #1

EC400: DPDI

Problem

Problem 2

Problem

Optimality conditions:

Question 2: Solution

Class #1

EC400: DPD

Problem 1

_ ...

Problem 2

Problem

Optimality conditions:

• From
$$[C_t]$$
: $\lambda_t = \frac{e^{-\rho t}}{C_t} \implies -\dot{\lambda}_t = \frac{e^{-\rho t}}{C_t} \left[\rho + \frac{\dot{C}_t}{C_t} \right]$.

Question 2: Solution

Class #1

Problem 2

Optimality conditions:

• From
$$[C_t]$$
: $\lambda_t = \frac{e^{-\rho t}}{C_t} \Longrightarrow -\dot{\lambda}_t = \frac{e^{-\rho t}}{C_t} \left[\rho + \frac{\dot{C}_t}{C_t} \right].$

• Plugging into $[B_t]$:

$$r\frac{e^{-\rho t}}{C_t} = \frac{e^{-\rho t}}{C_t} \left[\rho + \frac{\dot{C}_t}{C_t} \right] \iff (r - \rho) = \frac{\dot{C}_t}{C_t} = 0 \implies \boxed{C_t = C_0 e^{(r - \rho)t}}.$$

Question 2: Solution

Class #1

Problem 2

Optimality conditions:

• From
$$[C_t]$$
: $\lambda_t = \frac{e^{-\rho t}}{C_t} \Longrightarrow \left[-\dot{\lambda}_t = \frac{e^{-\rho t}}{C_t} \left[\rho + \frac{\dot{C}_t}{C_t} \right] \right]$.

• Plugging into $[B_t]$:

$$r\frac{e^{-\rho t}}{C_t} = \frac{e^{-\rho t}}{C_t} \left[\rho + \frac{\dot{C}_t}{C_t} \right] \iff (r - \rho) = \frac{\dot{C}_t}{C_t} = 0 \implies \boxed{C_t = C_0 e^{(r - \rho)t}}.$$

• Using the assumption $r = \rho$: $C_t = C_0 \ \forall \ t \in [0, T]$.

Question 2: Solution

Class #1

EC400: DPD

Problem 1

Problem 2

Frobleiii

Problem

Optimality conditions:

• From
$$[C_t]$$
: $\lambda_t = \frac{e^{-\rho t}}{C_t} \Longrightarrow \left[-\dot{\lambda}_t = \frac{e^{-\rho t}}{C_t} \left[\rho + \frac{\dot{C}_t}{C_t} \right] \right]$.

• Plugging into $[B_t]$:

$$r\frac{e^{-\rho t}}{C_t} = \frac{e^{-\rho t}}{C_t} \left[\rho + \frac{\dot{C}_t}{C_t} \right] \iff (r - \rho) = \frac{\dot{C}_t}{C_t} = 0 \implies \boxed{C_t = C_0 e^{(r - \rho)t}}.$$

• Using the assumption $r = \rho$: $C_t = C_0 \ \forall \ t \in [0, T]$.

▶ details

Transversality condition:

$$\lambda_T B_T = 0 \iff \frac{e^{-\rho t}}{C_0} B_T = 0 \iff B_T = 0.$$

Problem 2 Question 3

Class #1

Problem 2

3. Obtain the intertemporal budget constraint and solve for the optimal consumption.

Question 3: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem

Question 3: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem

$$e^{-rt}\dot{B}_t - re^{-rt}B_t = -e^{-rt}C_t$$

Question 3: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem

$$e^{-rt}\dot{B}_t - re^{-rt}B_t = -e^{-rt}C_t$$

$$\iff$$
 d $\left[e^{-rt}B_t\right] = -e^{-rt}C_tdt$

Question 3: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem :

$$e^{-rt}\dot{B}_t - re^{-rt}B_t = -e^{-rt}C_t$$

$$\iff d[e^{-rt}B_t] = -e^{-rt}C_tdt$$

$$\iff e^{-rt}B_t = B_0 - \int_0^t e^{-rs}C_sds$$

Problem 2 Question 3: Solution

Class #1
EC400: DPD

_ ...

Problem 2

Problem 3

$$e^{-rt}\dot{B}_t - re^{-rt}B_t = -e^{-rt}C_t$$

$$\iff d\left[e^{-rt}B_t\right] = -e^{-rt}C_tdt$$

$$\iff e^{-rt}B_t = B_0 - \int_0^t e^{-rs}C_sds$$

$$\implies \underbrace{e^{-rt}B_T}_{=} = B_0 - \int_0^T e^{-rs}C_sds.$$

Question 3: Solution

Class #1

EC400: DPDE

Problem

Problem 2

Problem

• Using $C_s = C_0 \ \forall \ s \in [0, \ T]$ and solving for C_0 :

Question 3: Solution

Class #1

EC400: DPDF

Problem

Problem 2

Problem

• Using $C_s = C_0 \ \forall \ s \in [0, T]$ and solving for C_0 :

$$\int_0^T e^{-rs} C_0 \mathrm{d}s = B_0$$

Question 3: Solution

Class #1

EC400: DPDE

Problem

Problem 2

Problem

• Using $C_s = C_0 \ \forall s \in [0, T]$ and solving for C_0 :

$$\int_0^T e^{-rs} C_0 \mathrm{d}s = B_0$$

$$\iff C_0 \left[-\frac{1}{r} e^{-rs} \right] \Big|_{s=0}^T = B_0$$

Question 3: Solution

Class #1

EC400: DPDE

Problem

Problem 2

Problem

• Using $C_s = C_0 \ \forall s \in [0, T]$ and solving for C_0 :

$$\int_0^T e^{-rs} C_0 ds = B_0$$

$$\iff C_0 \left[-\frac{1}{r} e^{-rs} \right] \Big|_0^T = B_0$$

$$\iff C_0 = \frac{rB_0}{rB_0}$$

$$\iff C_0 = \frac{rB_0}{1 - e^{-rT}}$$

Question 3: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem 3

• Using
$$C_s = C_0 \ \forall \ s \in [0, T]$$
 and solving for C_0 :

$$\int_0^T e^{-rs} C_0 \mathrm{d}s = B_0$$

$$\iff C_0 \left[-\frac{1}{r} e^{-rs} \right] \Big|_{s=0}^T = B_0$$

$$\iff C_0 = \frac{rB_0}{1 - e^{-rT}}$$

• Finally, using $r = \rho$ \Longrightarrow $C_t = C_0 \ \forall \ t \in [0, T]$:

$$C_t = \frac{\rho B_0}{1 - e^{-\rho T}} \,\forall t \in [0, T].$$

Problem 2 Question 4

Class #1

EC400: DPD1

Problem

Problem 2

Problem

4. Suppose the agent can choose not only consumption path, but also the length of life T. Assuming utility is zero for t > T and the agent cannot leave any debt, solve for the optimal value of T.

Question 4: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem

 Substituting the optimal consumption path into the objective function and integrating:

Question 4: Solution

Class #1

EC400: DPDF

Problem 1

Problem 2

Problem

 Substituting the optimal consumption path into the objective function and integrating:

$$\int_{0}^{T} e^{\rho t} \ln \left(\frac{\rho B_{0}}{1 - e^{-\rho T}} \right) dt = \left[\ln \left(\rho B_{0} \right) - \ln \left(1 - e^{-\rho T} \right) \right] \left(- \frac{e^{-\rho t}}{\rho} \right) \Big|_{t=0}^{T}$$

Question 4: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem

 Substituting the optimal consumption path into the objective function and integrating:

$$\int_{0}^{T} e^{\rho t} \ln \left(\frac{\rho B_{0}}{1 - e^{-\rho T}} \right) dt = \left[\ln \left(\rho B_{0} \right) - \ln \left(1 - e^{-\rho T} \right) \right] \left(- \frac{e^{-\rho t}}{\rho} \right) \Big|_{t=0}^{T}$$

$$= \left[\ln \left(\rho B_{0} \right) - \ln \left(1 - e^{-\rho T} \right) \right] \left(- \frac{e^{-\rho T} + 1}{\rho} \right).$$

Question 4: Solution

Class #1

Problem 1

Problem 2

Problem

 Substituting the optimal consumption path into the objective function and integrating:

$$\int_{0}^{T} e^{\rho t} \ln \left(\frac{\rho B_{0}}{1 - e^{-\rho T}} \right) dt = \left[\ln \left(\rho B_{0} \right) - \ln \left(1 - e^{-\rho T} \right) \right] \left(- \frac{e^{-\rho t}}{\rho} \right) \Big|_{t=0}^{T}$$

$$= \left[\ln \left(\rho B_{0} \right) - \ln \left(1 - e^{-\rho T} \right) \right] \left(- \frac{e^{-\rho T} + 1}{\rho} \right).$$

• The problem is:

$$\max_{T \in \mathbb{R}^2_+} \left[\ln \left(\rho B_0 \right) - \ln \left(1 - e^{-\rho T} \right) \right] \left(1 - e^{-\rho T} \right).$$

Problem 2 Question 4: Solution

Class #1

EC400: DPDI

Problem:

Problem 2

Problem

• Taking FOC and solving for T^* , we find:

$$T^* = \begin{cases} -\frac{1}{\rho} \ln{(1-\rho B_0 e^{-1})} & \text{if} \quad \rho B_0 e^{-1} < 1 \\ +\infty & \text{otherwise} \end{cases},$$

where
$$-\rho B_0 e^{-1} < 0 \implies \ln(1 - \rho B_0 e^{-1}) < 0$$
.

Problem 2 Question 5

Class #1

EC400: DPD

Problem

Problem 2

Problem

5. Derive the optimality condition for *T* using a perturbation argument.

Question 5: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem

• Starting from the, suppose the agent increases T by $dT = \Delta > 0$.

Question 5: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem

• Starting from the, suppose the agent increases T by $dT = \Delta > 0$.

• Given $\dot{C}_t = 0$, the agent spends $C_T \Delta$ over this period.

Question 5: Solution

Class #1

EC400: DPDF

Problem 1

Problem 2

- Starting from the, suppose the agent increases T by $dT = \Delta > 0$.
 - Given $\dot{C}_t = 0$, the agent spends $C_T \Delta$ over this period.
 - This requires a proportionate increase in B_T .

Question 5: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

- Starting from the, suppose the agent increases T by $dT = \Delta > 0$.
 - Given $\dot{C}_t = 0$, the agent spends $C_T \Delta$ over this period.
 - This requires a proportionate increase in B_T .
 - According to the BC:

Question 5: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

_ ...

- Starting from the, suppose the agent increases T by $dT = \Delta > 0$.
 - Given $\dot{C}_t = 0$, the agent spends $C_T \Delta$ over this period.
 - This requires a proportionate increase in B_T .
 - According to the BC:

$$B_T = e^{rT} B_0 - \frac{1}{r} (1 - e^{-rT}) C_T$$

Question 5: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem

• Starting from the, suppose the agent increases T by $dT = \Delta > 0$.

- Given $\dot{C}_t = 0$, the agent spends $C_T \Delta$ over this period.
- This requires a proportionate increase in B_T .
- According to the BC:

$$B_T = e^{rT} B_0 - \frac{1}{r} \left(1 - e^{-rT} \right) C_T$$

$$\Longrightarrow \underbrace{dB_T}_{C_T \Delta} = e^{rT} B_0 - \frac{1}{r} \left(1 - e^{-rT} \right) dC_T$$

Problem 2 Question 5: Solution

Class #1

EC400. DI D

Problem 1

Problem 2

- Starting from the, suppose the agent increases T by $dT = \Delta > 0$.
 - Given $\dot{C}_t = 0$, the agent spends $C_T \Delta$ over this period.
 - This requires a proportionate increase in B_T .
 - According to the BC:

$$B_T = e^{rT} B_0 - \frac{1}{r} (1 - e^{-rT}) C_T$$

$$\Longrightarrow \underbrace{dB_T}_{C_T \Delta} = e^{rT} B_0 - \frac{1}{r} (1 - e^{-rT}) dC_T$$

$$\iff dC_T = -\frac{rC_T \Delta}{e^{rT} - 1}.$$

Question 5: Solution

Class #1

EC400: DPDI

Problem

Problem 2

Question 5: Solution

Class #1

EC400: DPD

Problem

Problem 2

Problem

Thus,

$$dC_t = -\frac{rC_T\Delta}{e^{rT}-1} \,\forall t \in [0, T]$$

Problem 2 Question 5: Solution

Class #1

EC400: DPD1

Problem

Problem 2

Problem

Thus,

$$dC_t = -\frac{rC_T\Delta}{e^{rT}-1} \,\forall t \in [0, T]$$

• Given $r = \rho$, the net change in utility is

$$e^{-\rho T}u(C_T)\Delta + \int_0^T e^{-\rho t}u'(C_T)dC_Tdt = e^{-\rho T}\left[\ln\left(C_T\right) - 1\right]\Delta.$$

Problem 2 Question 5: Solution

Class #1

EC400: DPD1

Problem

Problem 2

Problem

Question 5: Solution

Class #1

EC400: DPDE

Problem:

Problem 2

Problem

$$\mathrm{d}u = 0$$

Question 5: Solution

Class #1

EC400: DPDF

Problem :

Problem 2

Problem

$$du = 0 \iff \ln\left(C_T\right) = 1$$

Question 5: Solution

Class #1

EC400: DPDI

Problem :

Problem 2

Problem

$$du = 0 \iff \ln(C_T) = 1 \iff C_T = e.$$

Problem 2 Question 5: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem

Under the interior solution, we must have

$$du = 0 \iff \ln(C_T) = 1 \iff C_T = e.$$

ullet Finally, combining with our previous expression for C_T ,

Question 5: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem :

Under the interior solution, we must have

$$du = 0 \iff \ln(C_T) = 1 \iff C_T = e.$$

ullet Finally, combining with our previous expression for C_T ,

$$\frac{\rho B_0}{1 - e^{-\rho T}} = e$$

Question 5: Solution

Class #1

EC400: DPDE

Problem 1

Problem 2

Problem

Under the interior solution, we must have

$$du = 0 \iff \ln(C_T) = 1 \iff C_T = e.$$

• Finally, combining with our previous expression for C_T ,

$$\frac{\rho B_0}{1 - e^{-\rho T}} = e$$

$$\iff e^{-\rho T} = 1 - \rho B_0 e^{-1}$$

Question 5: Solution

Class #1

EC400: DPDI

Problem 1

Problem 2

Problem 3

Under the interior solution, we must have

$$du = 0 \iff \ln(C_T) = 1 \iff C_T = e.$$

• Finally, combining with our previous expression for C_T ,

$$\frac{\rho B_0}{1 - e^{-\rho T}} = e$$

$$\iff e^{-\rho T} = 1 - \rho B_0 e^{-1}$$

$$\iff T = -\frac{1}{\rho} \ln (1 - \rho B_0 e^{-1}).$$

Class #1 EC400: DPD1

Problem 2

Problem 3

Consider the following investment problem. Given initial value of capital K_0 , a firm chooses investment path $\{I_t\}_{t=0}^{\infty}$ to maximize profits

$$\sum_{t=0}^{\infty} \beta^t \left[A_t K_t^{\alpha} - I_t - \frac{\phi}{2} \frac{I_t^2}{K_t} \right]$$

subject to the capital law of motion

$$K_{t+1} = (1 - \delta)K_t + I_t,$$

where A_t is the firm's productivity, $\alpha \in (0,1)$, $\phi > 0$ stays for the capital adjustment costs, and $\delta \in (0,1)$ is the depreciation rate.

Class #1

EC400: DPD1

Problem

Problem

Problem 3

1. Write down the Lagrangian and take the first-order conditions.

Question 1: Solution

Class #1

EC400: DPDI

B 11 4

Problem 2

rroblem

Problem 3

Lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^{t} \left[A_{t} K_{t}^{\alpha} - I_{t} - \frac{\phi}{2} \frac{I_{t}^{2}}{K_{t}} \right] + \sum_{t=0}^{\infty} \lambda_{t} \left[(1 - \delta) K_{t} + I_{t} - K_{t+1} \right]$$

Problem 3 Question 1: Solution

Class #1

EC400: DPD

Problem

Problem 3

Lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^{t} \left[A_{t} K_{t}^{\alpha} - I_{t} - \frac{\phi}{2} \frac{I_{t}^{2}}{K_{t}} \right] + \sum_{t=0}^{\infty} \lambda_{t} \left[(1 - \delta) K_{t} + I_{t} - K_{t+1} \right]$$

• FOC:

$$[I_t]$$

$$-\beta^t \left(1 + \phi \frac{I_t}{K_t}\right) + \lambda_t = 0$$

$$[K_{t+1}] \qquad -\lambda_t + \beta^{t+1} \left(\alpha A_{t+1} K_{t+1}^{\alpha - 1} + \frac{\phi}{2} \frac{I_{t+1}^2}{K_{t+1}^2} \right) + \lambda_{t+1} (1 - \delta) = 0$$

32/47

Class #1

EC400: DPD1

Problem

Problem

Problem 3

2. Use a finite-period version of the model to derive the transversality condition.

Problem 3 Question 2: Solution

Class #1

EC400: DPDI

Problem

Problem

Problem 3

• In a finite-period version of the model, we add that the firm cannot leave a negative stock of capital, i.e., $K_{T+1} \ge 0$.

Question 2: Solution

Class #1

EC400: DPD

Problem

Problem

Problem 3

• In a finite-period version of the model, we add that the firm cannot leave a negative stock of capital, i.e., $K_{T+1} \ge 0$.

The Lagrangian of this problem is

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} \left[A_{t} K_{t}^{\alpha} - I_{t} - \frac{\phi}{2} \frac{I_{t}^{2}}{K_{t}} \right] + \sum_{t=0}^{T} \lambda_{t} \left[(1 - \delta) K_{t} + I_{t} - K_{t+1} \right] + \mu K_{T+1}$$

Problem 3 Question 2: Solution

Class #1

EC400: DPD

Problem

Problem

Problem 3

- In a finite-period version of the model, we add that the firm cannot leave a negative stock of capital, i.e., $K_{T+1} > 0$.
- The Lagrangian of this problem is

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} \left[A_{t} K_{t}^{\alpha} - I_{t} - \frac{\phi}{2} \frac{I_{t}^{2}}{K_{t}} \right] + \sum_{t=0}^{T} \lambda_{t} \left[(1 - \delta) K_{t} + I_{t} - K_{t+1} \right] + \mu K_{T+1}$$

• The FOC wrt K_{T+1} is $-\lambda_T + \mu = 0 \iff \mu = \lambda_T$.

Question 2: Solution

Class #1

EC400: DPD1

Problem

Problem :

Problem 3

• The complementary slackness condition can then be written as

$$\mu K_{t+1} = 0 \iff \lambda_T K_{T+1} = 0.$$

Question 2: Solution

Class #1

EC400: DPDI

Problem

Problem 2

Problem 3

• The complementary slackness condition can then be written as $\mu K_{t+1} = 0 \iff \lambda_T K_{T+1} = 0$.

• By analogy, the **transversality condition** in the infinite-horizon model is $\lim_{t\to\infty} \lambda_t K_{t+1} = 0$.

Class #1

EC400: DPDI

Problem

Problem

Problem 3

3. Derive the analog of the Euler equation, i.e. the optimality condition for capital and investment that does not include λ_t . Interpret this equation using the perturbations of the optimal path.

Question 3: Solution

Class #1

EC400: DPDI

Problem

Problem

Problem 3

• Combining $[I_t]$ and $[K_{t+1}]$:

Question 3: Solution

Class #1

Problem 3

• Combining $[I_t]$ and $[K_{t+1}]$:

$$\beta^{t} \left(1 + \phi \frac{I_{t}}{K_{t}} \right) = \beta^{t+1} \left(\alpha A_{t+1} K_{t+1}^{\alpha - 1} + \frac{\phi}{2} \frac{I_{t+1}^{2}}{K_{t+1}^{2}} \right) + (1 - \delta) \beta^{t+1} \left(1 + \phi \frac{I_{t+1}}{K_{t+1}} \right)$$

Question 3: Solution

Class #1

EC400: DPDI

Problem 1

Problem

Problem 3

• Combining $[I_t]$ and $[K_{t+1}]$:

$$\beta^t \Big(1 + \phi \frac{I_t}{K_t} \Big) = \beta^{t+1} \bigg(\alpha A_{t+1} K_{t+1}^{\alpha - 1} + \frac{\phi}{2} \frac{I_{t+1}^2}{K_{t+1}^2} \bigg) + (1 - \delta) \beta^{t+1} \bigg(1 + \phi \frac{I_{t+1}}{K_{t+1}} \bigg)$$

$$\iff 1 + \phi \frac{I_t}{K_t} = \beta \left(\alpha A_{t+1} K_{t+1}^{\alpha - 1} + \frac{\phi}{2} \frac{I_{t+1}^2}{K_{t+1}^2} \right) + (1 - \delta) \beta \left(1 + \phi \frac{I_{t+1}}{K_{t+1}} \right).$$

Question 3: Solution

Class #1

EC400: DPDI

Problem :

Problem 2

Problem 3

• **Perturbation argument**: Suppose the firm increases I_t by $dI_t = \Delta > 0$, returning to the optimal trajectory in t + 2.

Question 3: Solution

Class #1

EC400: DPDI

Problem

Problem

Problem 3

• **Perturbation argument**: Suppose the firm increases I_t by $dI_t = \Delta > 0$, returning to the optimal trajectory in t + 2.

•
$$dI_t = \Delta \implies d\psi_t = \left(1 + \phi \frac{I_t}{K_t}\right) dI_t = \left(1 + \phi \frac{I_t}{K_t}\right) \Delta > 0$$
, where $\psi_t = I_t + \frac{\phi}{2} \frac{I_t^2}{K_t}$.

38/4

Question 3: Solution

Class #1

EC400: DPDI

Problem 1

Problem

Problem 3

• **Perturbation argument**: Suppose the firm increases I_t by $dI_t = \Delta > 0$, returning to the optimal trajectory in t + 2.

- $\mathrm{d}I_t = \Delta \implies \mathrm{d}\psi_t = \left(1 + \phi \frac{I_t}{K_t}\right) \mathrm{d}I_t = \left(1 + \phi \frac{I_t}{K_t}\right) \Delta > 0$, where $\psi_t = I_t + \frac{\phi}{2} \frac{I_t^2}{K_t}$.
- $\mathrm{d}I_t = \Delta \Longrightarrow \mathrm{d}K_{t+1} = \Delta$. Thus, $\mathrm{d}\pi_{t+1} = \frac{\partial \pi_{t+1}}{\partial K_{t+1}} \mathrm{d}K_{t+1} = \alpha A_{t+1} K_{t+1}^{\alpha-1} \Delta > 0$, where $\pi_t = A_t K_t^{\alpha}$.

Question 3: Solution

Class #1

EC400: DPDE

Problem

Problem

Problem 3

• Returning to the optimal trajectory in t+2 means leaving K_{t+2} uncahanged, i.e., $dK_{t+2}=0$. Therefore,

$$\underbrace{\mathrm{d}K_{t+2}}_{0} = (1-\delta)\underbrace{\mathrm{d}K_{t+1}}_{\Delta} + \mathrm{d}I_{t+1} \iff \mathrm{d}I_{t+1} = -(1-\delta)\Delta < 0.$$

Question 3: Solution

Class #1

EC400: DPDI

Problem

Problem 3

• Returning to the optimal trajectory in t+2 means leaving K_{t+2} uncahanged, i.e., $dK_{t+2}=0$. Therefore,

$$\underbrace{\mathrm{d}K_{t+2}}_{0} = (1-\delta)\underbrace{\mathrm{d}K_{t+1}}_{\Delta} + \mathrm{d}I_{t+1} \iff \mathrm{d}I_{t+1} = -(1-\delta)\Delta < 0.$$

$$\begin{array}{l} \bullet \ \mathrm{d}K_{t+1} = \Delta \ \mathrm{and} \ \mathrm{d}I_{t+1} = -(1-\delta) \, \Delta \Longrightarrow \\ \mathrm{d}\psi_{t+1} = -(1-\delta) \big(1 + \phi \frac{I_{t+1}}{K_{t+1}} \big) \, \Delta - \frac{\phi}{2} \frac{I_{t+1}^2}{K_{t+1}^2} \Delta < 0 \end{array}$$

Problem 3 Question 3: Solution

Class #1

EC400: DPDI

Froblem

Problem

Problem 3

• Returning to the optimal trajectory in t+2 means leaving K_{t+2} uncahanged, i.e., $dK_{t+2}=0$. Therefore,

$$\underbrace{\mathrm{d}K_{t+2}}_{0} = (1-\delta)\underbrace{\mathrm{d}K_{t+1}}_{\Delta} + \mathrm{d}I_{t+1} \iff \mathrm{d}I_{t+1} = -(1-\delta)\Delta < 0.$$

- $\begin{array}{l} \bullet \ \mathrm{d}K_{t+1} = \Delta \ \mathrm{and} \ \mathrm{d}I_{t+1} = -(1-\delta) \, \Delta \Longrightarrow \\ \mathrm{d}\psi_{t+1} = -(1-\delta) \big(1 + \phi \frac{I_{t+1}}{K_{t+1}} \big) \, \Delta \frac{\phi}{2} \frac{I_{t+1}^2}{K_{t+1}^2} \Delta < 0 \end{array}$
- Combining all these costs and benefits and requiring that the perturbation is not profitable, we get the Euler equation.

Class #1

Problem 3

Rewrite the capital law of motion for an arbitrary length of period Δ . Obtain the continuous-time version of the optimization problem.

Class #1

EC400: DPDI

Fioblem

Problem

Problem 3

• Note that K_{t+1} is a **stock** variable while I_t is a **flow**, just as depreciation δK_t and profits $A_t K_t^{\alpha}$.

Class #1

EC400: DPDE

- ..

Problem

Problem 3

• Note that K_{t+1} is a **stock** variable while I_t is a **flow**, just as depreciation δK_t and profits $A_t K_t^{\alpha}$.

• Let $\beta \equiv e^{-r}$. Then,

Class #1

EC400: DPDI

Troblem

Problem :

Problem 3

• Note that K_{t+1} is a **stock** variable while I_t is a **flow**, just as depreciation δK_t and profits $A_t K_t^{\alpha}$.

• Let $\beta \equiv e^{-r}$. Then,

$$K_{t+\Delta} = (1 - \delta \Delta)K_t + I_t \Delta$$

Class #1

EC400: DPDE

Troblem

Problem

Problem 3

• Note that K_{t+1} is a **stock** variable while I_t is a **flow**, just as depreciation δK_t and profits $A_t K_t^{\alpha}$.

• Let $\beta \equiv e^{-r}$. Then,

$$K_{t+\Delta} = (1 - \delta \Delta)K_t + I_t \Delta$$

$$\iff K_{t+\Delta} - K_t = (I_t - \delta K_t)\Delta$$

Class #1

Problem 3

- Note that K_{t+1} is a **stock** variable while I_t is a **flow**, just as depreciation δK_t and profits $A_t K_t^{\alpha}$.
- Let $\beta \equiv e^{-r}$. Then,

$$K_{t+\Delta} = (1 - \delta \Delta)K_t + I_t \Delta$$

$$\iff K_{t+\Delta} - K_t = (I_t - \delta K_t)\Delta$$

$$\implies \dot{K}_t \equiv \lim_{\Delta \to 0} \frac{K_{t+\Delta} - K_t}{\Delta} = I_t - \delta K_t.$$

Class #1

EC400: DPD1

Problem

Problem

Problem 3

The Objective function is

$$\int_0^\infty e^{-rt} \left(A_t K_t^\alpha - I_t - \frac{\phi}{2} \frac{I_t^2}{K_t} \right) \mathrm{d}t.$$

Class #1

EC400: DPD

Problem

Problem

Problem 3

5. Define the Hamiltonian and write down the optimality conditions.

Class #1

EC400: DPDI

Problem 1

Problem :

Problem 3

Hamiltonian:

$$\mathcal{H}_t = e^{-rt} \left(A_t K_t^{\alpha} - I_t - \frac{\phi}{2} \frac{I_t^2}{K_t} \right) + \lambda_t (I_t - \delta K_t),$$

where λ_t is the co-state variable.

Class #1

EC400: DP

Problem 1

Problem 2

Problem 3

Hamiltonian:

$$\mathcal{H}_t = e^{-rt} \left(A_t K_t^{\alpha} - I_t - \frac{\phi}{2} \frac{I_t^2}{K_t} \right) + \lambda_t (I_t - \delta K_t),$$

where λ_t is the co-state variable.

Optimality conditions:

$$[I_t] \qquad \frac{\partial \mathcal{H}_t}{\partial I_t} = 0 \iff -e^{-rt} \left(1 + \phi \frac{I_t}{K_t} \right) + \lambda_t = 0$$

$$[K_t] \qquad \frac{\partial \mathcal{H}_t}{\partial K_t} = -\dot{\lambda}_t \iff e^{-rt} \left(\alpha A_t K_t^{\alpha - 1} + \phi \frac{I_t^2}{K_t^2} \right) - \delta \lambda_t = -\dot{\lambda}_t$$

Class #1

EC400: DPD1

Problem

Problem

Problem 3

Show that the same continuous-time optimality conditions can be obtained directly from the optimality conditions in discrete time.

Class #1

Problem 3

Rewriting the FOC of the discrete-time problem for am arbitrary length of period Δ ,

$$[I_t] \qquad -e^{-rt} \left(1 + \phi \frac{I_t}{K_t} \right) \Delta + \lambda_t \Delta = 0$$

$$\iff -e^{-rt} \left(1 + \phi \frac{I_t}{K_t} \right) + \lambda_t = 0$$

$$[K_{t+1}]$$

$$-\lambda_t + e^{-r(t+\Delta)} \left(\alpha A_{t+\Delta} K_{t+\Delta}^{\alpha-1} + \frac{\phi}{2} \frac{I_{t+\Delta}^2}{K_{t+\Delta}^2} \right) \Delta + \lambda_{t+\Delta} (1 - \delta \Delta) = 0$$

$$\iff e^{-r(t+\Delta)} \left(\alpha A_{t+\Delta} K_{t+\Delta}^{\alpha-1} + \frac{\phi}{2} \frac{I_{t+\Delta}^2}{K_{t+\Delta}^2} \right) - \delta \lambda_{t+\Delta} = -\frac{\lambda_{t+\Delta} - \lambda_t}{\Delta}$$

Class #1

EC400: DPD

Problem

Problem

Problem 3

• Finally, taking limits as $\Delta \to 0$, we obtain the same optimality conditions from question 5.

Class #1

EC400: DPDE

Appendix

Write the BC for $t \in \{0, ..., T\}$ as $B_t = R^{-1} (B_{t+1} - Y_t + C_t)$, evaluate at t = 0, and iterate forward:

$$B_0 = R^{-1} \left(B_1 - Y_0 + C_0 \right)$$

Class #1

EC400: DPDE

Appendix

Write the BC for $t \in \{0, ..., T\}$ as $B_t = R^{-1}(B_{t+1} - Y_t + C_t)$, evaluate at t = 0, and iterate forward:

$$B_0 = R^{-1} \left(B_1 - Y_0 + C_0 \right)$$

$$= R^{-1} \left[R^{-1} \left(B_2 - Y_1 + C_1 \right) - Y_0 + C_0 \right]$$

Class #1

EC400: DPDE

Appendix

Write the BC for $t \in \{0, ..., T\}$ as $B_t = R^{-1}(B_{t+1} - Y_t + C_t)$, evaluate at t = 0, and iterate forward:

$$B_0 = R^{-1} (B_1 - Y_0 + C_0)$$

$$= R^{-1} [R^{-1} (B_2 - Y_1 + C_1) - Y_0 + C_0]$$

$$= R^{-2} B_2 + R^{-2} (C_1 - Y_1) + R^{-1} (C_0 - Y_0)$$

Class #1

Appendix

Write the BC for $t \in \{0, ..., T\}$ as $B_t = R^{-1} (B_{t+1} - Y_t + C_t)$, evaluate at t = 0, and iterate forward:

$$B_0 = R^{-1} (B_1 - Y_0 + C_0)$$

$$= R^{-1} [R^{-1} (B_2 - Y_1 + C_1) - Y_0 + C_0]$$

$$= R^{-2} B_2 + R^{-2} (C_1 - Y_1) + R^{-1} (C_0 - Y_0)$$

$$= R^{-2} [R^{-1} (B_3 - Y_2 + C_2)] + R^{-2} (C_1 - Y_1) + R^{-1} (C_0 - Y_0)$$

Class #1
EC400: DPDE

Appendix

Write the BC for $t \in \{0, ..., T\}$ as $B_t = R^{-1} (B_{t+1} - Y_t + C_t)$, evaluate at t = 0, and iterate forward:

$$B_{0} = R^{-1} (B_{1} - Y_{0} + C_{0})$$

$$= R^{-1} [R^{-1} (B_{2} - Y_{1} + C_{1}) - Y_{0} + C_{0}]$$

$$= R^{-2} B_{2} + R^{-2} (C_{1} - Y_{1}) + R^{-1} (C_{0} - Y_{0})$$

$$= R^{-2} [R^{-1} (B_{3} - Y_{2} + C_{2})] + R^{-2} (C_{1} - Y_{1}) + R^{-1} (C_{0} - Y_{0})$$

$$= R^{-3} B_{3} + R^{-3} (C_{2} - Y_{2}) + R^{-2} (C_{1} - Y_{1}) + R^{-1} (C_{0} - Y_{0})$$

Appendix

Class #1

Write the BC for
$$t\in\{0,\ldots,T\}$$
 as $B_t=R^{-1}\left(B_{t+1}-Y_t+C_t\right)$, evaluate at $t=0$, and iterate forward:
$$B_0=R^{-1}\left(B_1-Y_0+C_0\right)$$

$$=R^{-1}\left[R^{-1}\left(B_2-Y_1+C_1\right)-Y_0+C_0\right]$$

$$= R^{-1} [R^{-1} (B_2 - Y_1 + C_1) - Y_0 + C_0]$$

$$= R^{-2} B_2 + R^{-2} (C_1 - Y_1) + R^{-1} (C_0 - Y_0)$$

$$= R^{-2} [R^{-1} (B_3 - Y_2 + C_2)] + R^{-2} (C_1 - Y_1) + R^{-2}$$

$$= R^{-2}B_2 + R^{-2}(C_1 - Y_1) + R^{-1}(C_0 - Y_0)$$

$$= R^{-2}[R^{-1}(B_3 - Y_2 + C_2)] + R^{-2}(C_1 - Y_1) + R^{-1}(C_0 - Y_0)$$

$$= R^{-2} \left[R^{-1} \left(B_3 - Y_2 + C_2 \right) \right] + R^{-2} \left(C_1 - Y_1 \right) + R^{-1} \left(C_0 - Y_0 \right)$$

$$= R^{-3} B_3 + R^{-3} \left(C_2 - Y_2 \right) + R^{-2} \left(C_1 - Y_1 \right) + R^{-1} \left(C_0 - Y_0 \right)$$

$$\vdots$$

$$= R^{-1} \left[R^{-T} B_{T+1} + \sum_{t=0}^{T} R^{-t} \left(C_t - Y_t \right) \right].$$

Class #1

EC400: DPDE

Appendix

Thus,

$$RB_0 = R^{-T}B_{T+1} + \sum_{t=0}^{T} R^{-t} (C_t - Y_t).$$

Class #1

EC400: DPDE

Appendix

Thus,

$$RB_0 = R^{-T}B_{T+1} + \sum_{t=0}^{T} R^{-t} (C_t - Y_t).$$

 $lackbox{ Finally, use the assumptions } \overline{B_0=0} \text{ and } \overline{Y_t=Y\ \forall\ t\in\{0,\dots,T\}} \text{ to obtain }$

$$0 = R^{-T} B_{T+1} + \sum_{t=0}^{T} R^{-t} (C_t - Y).$$

Class #1

EC400: DPDE

 ${\bf Appendix}$

Class #1

EC400: DPDE

 ${\bf Appendix}$

$$C_t = R\beta C_{t-1}$$

Class #1

EC400: DPDE

Appendix

$$C_{t} = R\beta C_{t-1}$$
$$= R\beta (R\beta C_{t-2})$$

Class #1

EC400: DPDE

Appendix

$$C_{t} = R\beta C_{t-1}$$

$$= R\beta (R\beta C_{t-2})$$

$$= (R\beta)^{2} C_{t-2}$$

Class #1

EC400: DPDE

Appendix

$$C_{t} = R\beta C_{t-1}$$

$$= R\beta (R\beta C_{t-2})$$

$$= (R\beta)^{2} C_{t-2}$$

$$= (R\beta)^{2} (R\beta C_{t-3})$$

Class #1

EC400: DPDE

Appendix

$$C_{t} = R\beta C_{t-1}$$

$$= R\beta (R\beta C_{t-2})$$

$$= (R\beta)^{2} C_{t-2}$$

$$= (R\beta)^{2} (R\beta C_{t-3})$$

$$= (R\beta)^{3} C_{t-3}$$

Class #1

EC400: DPDE

Appendix

$$C_{t} = R\beta C_{t-1}$$

$$= R\beta (R\beta C_{t-2})$$

$$= (R\beta)^{2} C_{t-2}$$

$$= (R\beta)^{2} (R\beta C_{t-3})$$

$$= (R\beta)^{3} C_{t-3}$$

$$\vdots$$

$$= (R\beta)^{t} C_{t-t}.$$

Class #1

EC400: DPDE

Appendix

$$C_{t} = R\beta C_{t-1}$$

$$= R\beta (R\beta C_{t-2})$$

$$= (R\beta)^{2} C_{t-2}$$

$$= (R\beta)^{2} (R\beta C_{t-3})$$

$$= (R\beta)^{3} C_{t-3}$$

$$\vdots$$

$$= (R\beta)^{t} C_{t-t}.$$

• Finally, plug the resulting expression for $C_T(C_0)$ into the terminal condition to obtain $B_{T+1} = \eta (R\beta)^T C_0$.

Class #1

EC400: DPDE

Appendix

• Plugging in the expressions for $C_t\left(C_0\right)$ and $B_{T+1}\left(C_0\right)$ into the budget constraint:

Class #1

EC400: DPDE

Appendix

• Plugging in the expressions for $C_t(C_0)$ and $B_{T+1}(C_0)$ into the budget constraint:

$$R^{-1} \left[R^{-T} \eta (R\beta)^T C_0 + \sum_{t=0}^T R^{-t} \left[(R\beta)^t C_0 - Y \right] \right] = 0$$

Class #1

EC400: DPDE

• Plugging in the expressions for
$$C_t(C_0)$$
 and $B_{T+1}(C_0)$ into the budget constraint:

$$R^{-1} \left[R^{-T} \eta (R\beta)^T C_0 + \sum_{t=0}^T R^{-t} \left[(R\beta)^t C_0 - Y \right] \right] = 0$$

$$\iff \eta \beta^T C_0 + C_0 \sum_{t=0}^T \beta^t - Y \sum_{t=0}^T R^{-t} = 0$$

Class #1

EC400: DPDE

• Plugging in the expressions for
$$C_t(C_0)$$
 and $B_{T+1}(C_0)$ into the budget constraint:

$$R^{-1} \left[R^{-T} \eta (R\beta)^T C_0 + \sum_{t=0}^T R^{-t} \left[(R\beta)^t C_0 - Y \right] \right] = 0$$

$$\iff \eta \beta^T C_0 + C_0 \sum_{t=0}^T \beta^t - Y \sum_{t=0}^T R^{-t} = 0$$

$$\iff \eta \beta^T C_0 + C_0 \frac{1 - \beta^{T+1}}{1 - \beta} - Y \frac{1 - R^{-(T+1)}}{1 - R^{-1}} = 0$$

Class #1

EC400: DPDE

• Plugging in the expressions for
$$C_t(C_0)$$
 and $B_{T+1}(C_0)$ into the budget constraint:

$$R^{-1} \left[R^{-T} \eta (R\beta)^T C_0 + \sum_{t=0}^T R^{-t} \left[(R\beta)^t C_0 - Y \right] \right] = 0$$

$$\iff \eta \beta^T C_0 + C_0 \sum_{t=0}^T \beta^t - Y \sum_{t=0}^T R^{-t} = 0$$

$$\iff \eta \beta^T C_0 + C_0 \frac{1 - \beta^{T+1}}{1 - \beta} - Y \frac{1 - R^{-(T+1)}}{1 - R^{-1}} = 0$$

$$\iff C_0 \frac{1 - \beta^{T+1} + (1 - \beta)\eta \beta^T}{1 - \beta} = Y \frac{R \left(1 - R^{-(T+1)} \right)}{R - 1}$$

Class #1

EC400: DPDE

Appendix

$$R^{-1} \left[R^{-T} \eta (R\beta)^T C_0 + \sum_{t=0}^T R^{-t} \left[(R\beta)^t C_0 - Y \right] \right] = 0$$

$$\iff \eta \beta^T C_0 + C_0 \sum_{t=0}^T \beta^t - Y \sum_{t=0}^T R^{-t} = 0$$

$$\iff \eta \beta^T C_0 + C_0 \frac{1 - \beta^{T+1}}{1 - \beta} - Y \frac{1 - R^{-(T+1)}}{1 - R^{-1}} = 0$$

$$\iff C_0 \frac{1 - \beta^{T+1} + (1 - \beta)\eta \beta^T}{1 - \beta} = Y \frac{R \left(1 - R^{-(T+1)} \right)}{R - 1}$$

Plugging in the expressions for $C_t(C_0)$ and $B_{T+1}(C_0)$ into the budget constraint:

 $\iff C_0 = \frac{1 - \beta}{1 + n\beta^T - (1 + n)\beta^{T+1}} \frac{R - R^{-T}}{R - 1} Y.$

Class #1

EC400: DPDE

Appendix

Rewrite the differential equation

$$\frac{\dot{C}_t}{C_t} = (r - \rho) \iff \frac{1}{C_t} dC_t = (r - \rho) dt$$

and integrate on both sides to obtain

$$\kappa + \ln(C_t) = \psi + (r - \rho)t$$

$$\iff C_t = C_0 e^{(r - \rho)t}.$$

where κ and ψ are the constants of integration and $C_0 \equiv e^{\psi - \kappa}$.

Class #1

EC400: DPDE

FOC:

Class #1

EC400: DPDE

Appendix

$$\frac{-\rho e^{-\rho T^*}}{1 - e^{-\rho T^*}} \left[1 - e^{-\rho T^*} \right] + \left[\ln \left(\rho B_0 \right) - \ln \left(1 - e^{-\rho T^*} \right) \right] \rho e^{-\rho T^*} = 0$$

Class #1

EC400: DPDE

Appendix

$$\frac{-\rho e^{-\rho T^*}}{1 - e^{-\rho T^*}} \left[1 - e^{-\rho T^*} \right] + \left[\ln \left(\rho B_0 \right) - \ln \left(1 - e^{-\rho T^*} \right) \right] \rho e^{-\rho T^*} = 0$$

$$\iff \ln (1 - e^{-\rho T^*}) = \ln (\rho B_0 e^{-1})$$

Class #1

EC400: DPDE

Appendix

$$\frac{-\rho e^{-\rho T^*}}{1 - e^{-\rho T^*}} \left[1 - e^{-\rho T^*} \right] + \left[\ln \left(\rho B_0 \right) - \ln \left(1 - e^{-\rho T^*} \right) \right] \rho e^{-\rho T^*} = 0$$

$$\iff \ln (1 - e^{-\rho T^*}) = \ln (\rho B_0 e^{-1})$$

$$\iff e^{-\rho T^*} = 1 - \rho B_0 e^{-1}$$

Class #1

EC400: DPDE

Appendix

$$\frac{-\rho e^{-\rho T^*}}{1 - e^{-\rho T^*}} \left[1 - e^{-\rho T^*} \right] + \left[\ln \left(\rho B_0 \right) - \ln \left(1 - e^{-\rho T^*} \right) \right] \rho e^{-\rho T^*} = 0$$

$$\iff \ln (1 - e^{-\rho T^*}) = \ln (\rho B_0 e^{-1})$$

$$\iff e^{-\rho T^*} = 1 - \rho B_0 e^{-1}$$

$$\iff T^* = -\frac{1}{\rho} \ln (1 - \rho B_0 e^{-1}),$$

Class #1

EC400: DPDE

Appendix

$$\frac{-\rho e^{-\rho T^*}}{1 - e^{-\rho T^*}} \left[1 - e^{-\rho T^*} \right] + \left[\ln \left(\rho B_0 \right) - \ln \left(1 - e^{-\rho T^*} \right) \right] \rho e^{-\rho T^*} = 0$$

$$\iff \ln (1 - e^{-\rho T^*}) = \ln (\rho B_0 e^{-1})$$

$$\iff e^{-\rho T^*} = 1 - \rho B_0 e^{-1}$$

$$\iff T^* = -\frac{1}{\rho} \ln (1 - \rho B_0 e^{-1}),$$

which is well-defined as long as $1 - \rho B_0 e^{-1} > 0 \iff \rho B_0 e^{-1} < 1$.

Class #1

EC400: DPDE

$$du = e^{-\rho T} \ln (C_T) \Delta - \int_0^T \frac{e^{-\rho t}}{C_T} \frac{r C_T \Delta}{e^{rt} - 1} dt$$

Class #1

EC400: DPDE

$$du = e^{-\rho T} \ln (C_T) \Delta - \int_0^T \frac{e^{-\rho t}}{C_T} \frac{r C_T \Delta}{e^{rt} - 1} dt$$
$$= e^{-\rho T} \ln (C_T) \Delta - \frac{r \Delta}{e^{rT} - 1} \frac{1 - e^{-\rho T}}{\rho}$$

Class #1

EC400: DPDE

$$du = e^{-\rho T} \ln (C_T) \Delta - \int_0^T \frac{e^{-\rho t}}{C_T} \frac{r C_T \Delta}{e^{rt} - 1} dt$$
$$= e^{-\rho T} \ln (C_T) \Delta - \frac{r \Delta}{e^{rT} - 1} \frac{1 - e^{-\rho T}}{\rho}$$
$$= e^{-\rho T} \ln (C_T) \Delta - \frac{1 - e^{-\rho T}}{\frac{1}{e^{-rT}} - 1} \Delta$$

Class #1

EC400: DPDE

$$du = e^{-\rho T} \ln (C_T) \Delta - \int_0^T \frac{e^{-\rho t}}{C_T} \frac{r C_T \Delta}{e^{rt} - 1} dt$$

$$= e^{-\rho T} \ln (C_T) \Delta - \frac{r \Delta}{e^{rT} - 1} \frac{1 - e^{-\rho T}}{\rho}$$

$$= e^{-\rho T} \ln (C_T) \Delta - \frac{1 - e^{-\rho T}}{\frac{1}{e^{-rT}} - 1} \Delta$$

$$= e^{-\rho T} \ln (C_T) \Delta - \frac{e^{-rT} \left(1 - e^{-\rho T}\right)}{1 - e^{-rT}} \Delta$$

Class #1

EC400: DPDE

$$du = e^{-\rho T} \ln (C_T) \Delta - \int_0^T \frac{e^{-\rho t}}{C_T} \frac{r C_T \Delta}{e^{rt} - 1} dt$$

$$= e^{-\rho T} \ln (C_T) \Delta - \frac{r \Delta}{e^{rT} - 1} \frac{1 - e^{-\rho T}}{\rho}$$

$$= e^{-\rho T} \ln (C_T) \Delta - \frac{1 - e^{-\rho T}}{\frac{1}{e^{-rT}} - 1} \Delta$$

$$= e^{-\rho T} \ln (C_T) \Delta - \frac{e^{-rT} \left(1 - e^{-\rho T}\right)}{1 - e^{-rT}} \Delta$$

$$= e^{-\rho T} \left[\ln (C_T) \Delta - \frac{e^{-rT} \left(1 - e^{-\rho T}\right)}{1 - e^{-rT}} \Delta \right]$$

$$= e^{-\rho T} \left[\ln (C_T) - 1 \right] \Delta.$$

