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1 Density of continuous monotonic transformations of continuous r.v.’s

Let X € R be a continuous random variable with cdf Fx(z) = P(X < z) and pdf fx(z) = d%x(fc), and

Y = ¢g(X) with with either ¢'(z) = dg—(z‘r) > 0 Vz € Supp (X) or ¢'(z) < 0V € Supp (X). We can derive
the cdf and pdf of Y from those of X by noticing that

Fy(y) =P (Y S y) (definition)

=P (9(X) <) 0 =500

P(X <g'y) if ¢(x)>0 Ve e Supp(X)

= (monotonicity)

P(X >g'(y) if ¢'(z) <0V e Supp (X)

\

P(X <g'(y)) if ¢'(x) > 0 Va € Supp (X)

= (event equivalence)

1-P(X <gYy)) if ¢'(z) <0 Va € Supp (X)

Fx (97'(v)) if g'(x) >0 Vz € Supp (X)

= (definition)

1—Fyx (97 y)) if ¢'(z) <0 Vz € Supp (X)

(definition)

= fr(y) =

if ¢'(z) > 0 Va € Supp (X)

- (above result)

if ¢'(z) <0 Va € Supp (X)

fx (971 (W) d%;(y) if ¢'(z) > 0 Va € Supp (X)

= (chain rule)

S (g7 W) LW i g/(2) < 0 Va € Supp (X)

= fx (97 (v) ’dg(;;(y) ‘



2 Representation of N(u, 0'2) in terms of N(0, 1) distribution

Let ®(z) and ¢(z) represent the cdf and pdf of the N(0, 1) distribution, respectively. That is,

—1/2 l’2
o) = (2m)2exp (- )
and .
B(z) = / 6(s) ds.
Consider random variable Y ~ N (u, 02) and notice that
2\-1/2 (y—p’
fry) = (2770' ) P\~ 752 (Y ~N(g, 0?))
1/2 2z
= 0'_1 (271')_ / exp <—5> (cov. z=(y —p)/o)
= O'_I(b(z) (definition)
= U_1¢ <u> (reverse c.o.v.)
g
Also, using this result,

Yy
Fy (y) = / fy(S) ds (definition)

—o0o

Yy
= / 0'_1¢ <S — M) ds (above result)

ag
—o0
y—p
= / U_1¢(Z) (U dZ) (cov. z= (s —p)/o)
y—p
= / o (z)dz

=& <u> (definition)
g



Finally, a remarkable result:

a9(@) _ 4 (207 e (7))

dx dzx

Moreover,

*p(x)  do¢'(z)
dz?2  dz

(definition)

(chain rule)

(definition)

(definition)

(above result)

(chain rule)

(above result)



3 Truncated and censored distributions

Truncation:

A truncated distribution is a conditional distribution that results from restricting the domain of some
other probability distribution. Let X be a continuous r.v. with cdf Fx(-) and pdf fx(-) over support
Supp (X) = R. Consider the distribution of X after restricting the support to some interval (a, b], i.e., the
distribution of X | a < X < b. Naturally, this distribution should have the same shape as the unrestricted
distribution of X over (a, b, but at the same time it must integrate to 1 over its support. This suggests

dividing the density of X by the probability mass that X € (a,b]. That is,

0 if v<a
fx(@]a< X <b)= % if a<xz<b
0 if X>0b

_Ta <2 <b] fx(v)
P(a<X <b)

_ I[a <z <] fx(x)
Fx(b) — Fx(a)

and we can verify that

7Hh<x§ﬂﬁ@nm

_éfx(x\a<X§b)da:: Fr(b) — Fx(a)

—00

b
1
= —Fx(b) ~ @ a/fx(:c) dx

1
= () = Fx(a) [Fx(b) — Fx(a)]

=1

We can think of the special case of truncation from below —also known as truncation from the left—

as {X | X > a} = lim {X la< X < b} or, more precisely,
b—o0

lim Ia <z <] fx(x)

flw | X>a) = im =0 =510
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[z > a fx(x)
1 — Fx(a)

Obtaining the moments of a truncated distribution is standard once we know the relevant conditional
pdf fx(x | a < X <b). For example, the mean is simply

b
IE[X|a<X§b]:/a:fX(:c|a<X§b)dx

a

Analogous results can be obtained for

o Ta<z <] fx(x)
fx(@[ X <b)= lim Fy(b) — Fx(a)

Iz <b] fx(x)
Fy(b)

Censoring:

Censoring is a data problem or condition whereby values of the underlying random variable within an
interval are observed, reported, or transformed into a specific value. For example, suppose that Y* € R,
is household income, but for some reason (maybe privacy concerns) high incomes are top-coded. That is,
incomes above some threshold Y* > ¢ are reported/observed as Y = ¢, while incomes below the threshold
are completely observed. If income is above ¢, we know it is but not by how much. This is known as
censoring from above or right censoring.

Now, thinking of the distribution that applies to Y, it seems evident that it is neither continuous nor
discrete. In fact, it is a mixture of a continuous and a discrete distribution. Since

Y* if Yi<ec
Y = ,
c HfY*>e¢

the density for observations below ¢ coincides with that of Y*, while there is a mass point at ¥ = ¢

corresponding to Y* > ¢ with probability mass P(Y* > ¢) =1 — Fy=(c), i.e,
fry) =
1—Fy«(c) fY =c¢c

= fy» (y)]I[Y<c] [1 B (C)]I—H[y<c]

= fr+ ()’ [1 = Fy-())°



It is straightforward to derive the moments once we know the censored pdf. For example, for the

mean,
Ey [Y] = E; [Em v | 4] ] (L1E)
=P (5 = ].) E [Y | (5 = 1] + P (6 == 0) E [Y | (S = 0] (definition of expectation)
—P(Y <o E[Y|Y <d+ (1 _P(Y < c))E[Y Y = (definition of 5
C
== Fy* (C) / Yy fy* (y | Y* < C) dy + (1 - Fy* (C)) & (definition of Y")
[ vl (y)dy
= Fy* (C) - FY* (C) + (1 — Fy* (C)) C (truncated distribution)

C

= /yfy*(y)der(l—Fv*(C))C

— 00

Similar arguments can be used to obtain analogous results for left censoring (or censoring from below),

where
c if Y*<e
Y =
Y* ifY*>c¢
and
Fy«(c) ifY =c
fr(y) =

fr(y) Y >c



4 Moments of the truncated normal distribution

Let Y ~N (u, 02). Then, from our results in section 2,

fry) = 2o (y_“>

g g

g

Fy(y) =@ (y — M)

We can use our general results for truncated distributions from section 3 to derive the pdfof Y | Y > ¢

for any constant ¢ € R:

I Y
Pyl ¥ > = =0 R
0 ify<e
%% ify>c

E [Y | Y > C] = / yfy(y ‘ Y > C) dy (definition)
—0o0
Tl o¢()
== - g L d truncated densit
/yo_l_q)(c;#) y ( d d y)
1 /Oo< +o2) 26()od
= g — g c.owv. z =
e (g S T B
c_;&
! 7¢(z) dz + /Oozcb(z) dz
= g
e () |
c— i c—p
S P Y | 7—d¢(z) :
1 ® (C%) K o g (¢ (2) = —2¢(2))
c—p
1 o0
= c—u 12 |:1 — (p (c M>:| — U¢(Z) ...continues ...
- ( o ) i e—u




¢ (G
=+ g
e ()
Similarly,
E [Y2 | Y > C] = /y2 fy(y | Y > C) dy (definition)
7 1 y—u
= /y2;%dy (truncated density)
= : 7(M+UZ)2 ~¢(2)odz (cov. == L1
() a
ﬂ
! 27¢<z>dz+2 7z¢<z>dz
= o
e (G [ "
e cp
+ o2 / zng(z)dz]
c—p
= 1 (u2+02)/¢(z)dz+2,ua/z¢(z)dz
L2 ()
eu cu
+ o2 / (2271) qb(z)dz]
;}l;
1 2 2 C—H C— K
- 1*@ *2 "(2) = 227 z
o (o8 (n +0)[ ( . ﬂ MU¢( - 6" () = [2* = 1] 6(2))

o)
+ 02 / d¢/(z)] ...continues ...
c—p



1 oo
=’ +ol+o — 2 ¢(—“>+a¢’(z)
1_(I>< ou) =K
1 c—u b
2 2
=u'+oc°+o 2 — | +o | —z0(2 (¢'(2) = —2¢(2))
=t +oito ! 2,uq’>(c_'u)
1—<I>(C;“) o
—U[O—C_#Qb(c_'u)}]
o o
¢ (S
_ 2 2 o
pe 4o 4o (c+p) =@ (=)
Therefore,
Var (Y | Y>C) :]E[Y2 | Y>C:| *]E[Y | Y>C]2 (variance property)

c—U c—H 2
_M2+02+U (c—|—/1,) 1?(&)26;“) — </1,—|—o-1ibq)gc;u)> (above results)
2
¢ (3 o |, (o
_061_¢(C;“)+U [1 (1_(1)(0?)
2
_ 0 c o() [ o (H
=0 [1+01¢(CU#) (1_(1)(00“)
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