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1 Some useful properties

1. Bilinearity and associativity of the Kronecker product:

For arbitrary conformable matrices A, B, and C and scalar k,
AR (B+C)=A®B+A®C,
(B+C)®@ A=BA+C®R A,
(kA) @ B=A® (kB)=k(A® B),
(A B)eC=A® (Bx(C),

AR0=0® A=0.

2. Mixed-product property of the Kronecker product:

For arbitrary conformable matrices A, B, C, and D,
(A® B) (C ® D) = (AC) ® (BD) .
3. Mixed Kronecker matrix-vector product:
For arbitrary conformable matrices A, B, and C,
vec (ABC) = (C' @ A) vec (B).

4. Inverse of a Kronecker product:

For arbitrary nonsingular matrices A and B,

(A9 B) ' =A"'e B

5. Transpose of a Kronecker product:

For arbitrary matrices A and B,

(A9 B =A@ B'.

6. Determinant of a Kronecker product:

For arbitrary n x n matrix A and k X k matrix B,

[A® B| = |AF|B]".



7. Trace of a Kronecker product:

For arbitrary square matrices A and B,

tr (A® B) = tr (A) tr (B).

8. Vectorization is a unitary transformation (preserves the inner product):

For arbitrary m x n matrices A and B,

tr (A'B) = vec (A)' vec (B).

9. Basic properties of the trace:

For arbitrary square matrices A and B and scalar k,
tr (A+ B) = tr (4) + tr (B),
tr (kA) = ktr (A),
tr (A) = tr (A),

tr (I,,) = k.

10. The trace is invariant under cyclic permutations (the cyclic property):
For arbitrary suitably conformable matrices A, B, C, and D,
tr (ABCD) = tr (BCDA) =tr (CDAB) = tr (DABC).

11. (Some) basic properties of the determinant:

For arbitrary n x n matrices A and B and scalar k,

|Ik" =1,
[kA| = k™ [A],
A’ = 14],

|A7Y = A7 G 14 #0),

|AB| = |A] |B].

12. Determinant of a triangular matrix:



13.

n
i=1?

For arbitrary triangular matrix A with diagonal entries {a;;}

n
i=1

Moreover,

’A‘:O <~ HiE{l,...,n}IaiiZO,

and

aii:1Vi€{1,...,n} — |A|:1.

Basic properties of triangular matrices:

Let A,B € A be two arbitrary suitably conformable lower (upper) triangular matrices and k a
scalar, where A is the set of all lower (upper) triangular matrices and V is the set of all upper

(lower) triangular matrices. Then,

kA € A,

A+ B e A,

AB € A,
A7l € A with diagonal {a;;'}" | (provided [A] #0 ),

Aev

2 Notation

Consider the following system of N equations in IV endogenous variables and K exogenous variables for

a sample of T observations ¢t € {1,...,T'}

Let

diylt_}—"'+a}VyNt+Bixlt+"'+6}{th:ult (S~1>
divylt+"'+d%yNt+l;ivx1t+"'+B%$Kt:uNz‘ (SN)
Y1t L1 Uy
Yt = Ty = : Ut =
Ynt Tt UnNt
Nx1 Kx1 Nx1



al aN
A=

~N ~N

al aN

Then, we can compactly write the system for observation ¢ as

wol
Il

flyt + Bl’t = Ut

and, transposing and stacking the system for the 1" observations, we obtain the matrix equation

YA+ XB =U,

where

Y11
Y =

| Y17

L1
X =

| T1T

Uyq
U=

| Uir

Yn1

YnT

LK1

Tkr

UN1

UnT

TXN

TXN

As discussed in the lecture notes, the system is not identified without further restrictions on the

structural parameters

S
Il

vec (A)
vec (B)

N(N+K)x1

From now on we will suppose the system is identified through the imposition of

(i) N normalizations a‘ =1, i € {1,...,N}

(ii) At least N(N — 1) exclusion restrictions of the form EL; =0 or l~)§~C =0,1i,75 € {1,

Eed{l,...,K}.

For i € {1,..., N}, define:

N} i # 7,



° yéi): N; x 1 subvector of y;, containing N; < N —1 of the N — 1 endogenous variables in y; excluding

yi —i.e., the endogenous variable on the LHS of equation (S.7). The endogenous variables y;, (where

j§ # i) included in y,"” are those with a; # 0.

a™: N; x 1 subvector of

Nx1

corresponding to the coefficients on the endogenous variables y;, in yéi), i.e., those with aﬁ. # 0,

where a! = —a’ (for i # j).

:Eff): K; x 1 subvector of x;, containing K; < K of the K exogenous variables in ;. These are the

exogenous variables on the RHS of equation (S.i). The exogenous variables x;, included in z” are

those with b # 0.

b®: K,; x 1 subvector of

Kx1

corresponding to the coefficients on the exogenous variables x,, in xff), i.e., those with bl # 0, where

Then, we can write the system after imposing the normalizations and exclusion restrictions as

/ !/
v =y a4+ 20D 4y, (S.1)
/ /
Yne =y a™ + 2N 4oy, (S.N)
Now, let
(%)
o Y
2= .
xé”
(N +K;)x1
and
(%)
s =
X0
(Nj+K;)x1

so that equation (S.7) can be written as

NG
yitzzé)é()+uit



for i € {1,..., N}. Stacking equation (S.7) for the T" observations t € {1,...,T}, we obtain the matrix

form

Y, = YARKIO) + Uz’,

where Y; and U; are the i*™® columns of matrices Y and U, respectively,

ZW = {y(i) X”)]

Tx (N;+K;)
[y
YO =1 :
_yéi),- TxN;
_x(li)’_
X0 =1
-$(7i)/- TxK;
3 Question 1
3.1 General derivations
3.1.1 2SLS estimator
First, consider equation (S.7) alone, where i € {1,..., N}. The goal here is estimation of § and, as stated

above, identification is assumed. Since we are interested in the i*® column of Y, Yj, we need excluded
instruments for Y® —X® act as included instruments for themselves.

Solving for Y in equation (2), we obtain the reduced form

Y =XII' +V, (3)
where

= _—BA"
and

V=UA"".

Notice that exogeneity of X implies that
E[X'V]=E[X'U] A

= 0K><Na



so Y = XII' and U —where II' = (X'X)"1X'Y is the OLS estimator of II' in multivariate regression
(3)— are asymptotically uncorrelated since ] Therefore, for the best linear predictor of Y@, 17“),

is a valid excluded instrument, and the full matrix of instruments is

70 = [f/(z‘) X(w}

Tx(Nj+K;)

Note that Y is a submatrix of
Y = XIT
= X(X'X)"'X'Y
=XX'X)"'X"|lvy -+ YN
= | X(X'X)"'X'Y7 - X(X'X)'X'Yn|.

formed by the N; columns corresponding to the variables in yii), ie.,
YO = X(X'X) XY,
Moreover, since X® € Col (X) = X(X'X)'X'X(® = X,

YO x@) = (X(X’X)_lX’Y(”),X(“

=YX (X'X)" 1 x' x 0

— y@x@)
and
y Oy = (X(X’X)_lX’Y“))/X(X’X)‘IX’Y“)
=YX (X' X)) X'X(X'X) I X'Y®
=YX (X'X) I X'Y®
— vy @
— y@ry@).
Therefore,
R y (i)
ARACES [y(i) X(l)}
x (@)



yor| .

_ [ym X(i)}
x (@)

= 7070,

so the IV estimator is
e = (20720)1 207,
= (ZW'ZNT1 70y,

i.e., the OLS estimator of the regression of Y; on Y@ and X,
Now, consider estimation of the full system. To this end, write the system in matrix form by stacking

the N previously derived matrix equations
Y, = 7@ §0) +U;

for i € {1,..., N} as follows:

Y, AS o Oy +50) FYe) U,
= : : : +
Y () FIeY) U
NJ N Orsc(ny+x1) 2 NTX( X Ni+Ki> (N Ni+Ki>><1 NJ Nt
i=1 =1
— Y*=Z%+U",

where Y*, Z*, §, and U* are defined in the obvious way.!

Similarly, let

A o Opuinytkn)

7
Orscovircr) 4 NTX(% N'+Kv>

1=

'Note that Y* = vec (Y).



_X(X/X)—IXIZ(I) Ce OTX(NN+KN)
OT><(N1+K1) X(X,X)_lX/Z(N)
_X(X/X)—lX/ O AD o Oy k)
L OTXT X(X/X)_lX/ 0T><(N1+K1) 7N
NTXNT NTX(-];V:I Ni+Ki)

Iy ® X(X'X)—le) Z*

IvIy®X ((X'X)—lx')) z

Iv@ X)) (Iv @ (X'X)7'x") 2*

Iy X) (In Iy @ (X'X) 1) x7) 2°

- (IN ® X) (IN ® (X’X)*l) (IN ® X’)Z*.

Finally, following analogous arguments to those discussed above for the single equation case, the

system-2SLS estimator is the OLS estimator of the regression of Y* on Z *
Soss = (2721 2y
— (27 Y,
3.1.2 3SLS estimator

Now, to obtain the 3SLS estimator —which amounts to a GLS-style transformation—, notice that the

assumption that
iid

U ~ (O,E)
implies that, for 7,5 € {1,..., N},
Uiy
E [UlUJ,] =E (uﬂ U7T)
UiT

10



E[uiluﬂ] 0
i 0 E [uiTujT}
O'Z'j 0
0 Oij
= oy Ir,
where
011 -+ O1IN
Y =
ON1 °'* ONN
Therefore,
Ur
B o) =E|| ¢ | (07 - )
Un
E[UWU;] --- E[ULUN]
E[UNU{] --- E[UNU]’V]
oiilr -+ oinIr
oN1Ir - onNIr
011 -+ 01N
|ON1 -+ ONN
— E ® IT'

Next, applying the GLS-style transformation,

(2*1/2 ® IT> Y* = (2*1/2 ® IT) 756 + (2*1/2 ® IT> U*

11



with

121, ) /] (2—1/2 ®IT>,

E[(E‘UQ@JT)U(( Pern)u >]

n- 1/2®IT>(E®I )( *1/2’®I’T>

S 129w, IT)< 1/2®I)

(>
(
(
(>

~1/2 55— 1/2®ITITIT)
= (IN ®IT>

= INT)

we obtain the 3SLS estimator

-1

Sssis = (((21/2 ® IT) 2*)’(21/2 ® IT) 2) <(21/2 ® IT) 2*)’(21/2 ® IT) Y*

-1
/Z\*/(E—I/QI ® IT/) (E—I/Q ® IT) 2*) 2*/ (E—I/QI ® IT/) <2—1/2 ® IT) Y*

A (1 ® X(X’X)*lX’) (2*1 ® IT) X(X’X)1X’2*> _IZ*' (1 ® X(X’X)’lX’> (2*1 ® IT> y*

_ (z*’X(X’X)—lx’(z—l ® IT) X(X’X)—1X’2*> 1Z*’X(X’X)_1X’<E_1 ® IT) y*
-1
- (Z*’(E_l ® X(X’X)—lx’) X(X’X)_IX’Z*> Z*’(E_l ® X(X’X)—lx’) y*

(Z*’ (2—1 ® X(X’X)—lx’) (1 ® X(X’X)—lx’) Z*) 712*’ (2—1 ® X(X’X)—lx’) y*

-1
Z*’(Zfl ® X(X’X)*X’X(X’X)*lX’) Z*) Z*’(E*l ® X(X’X)*X’) y*

12



—1
Z*/ (E—l ® X(X/X)—IX/> Z*> Z*,<Z_1 ® X(X/X)—lX/) Y*
-1
Z*’(INE_l ® X(X’X)—lx’) Z*) Z*’(INz—l ® X(X’X)_lX’) y*

Z*’(IN ® X) (2—1 ® (X’X)—lx’) Z*) _1Z*’<IN ® X) (2—1 ® (X’X)—1X’> v

_ (Z*’(IN ® X) (2—1IN ® (X’X)—lx’) Z*) 1Z*’(IN ® X) (z-UN ® (X’X)—lx’) y*

_ (Z*’(IN ® X) (z*l ® (X’X)*l) (IN ® X/) Z*> _IZ*’<IN ® X) (2*1 ® (X'X)*) (IN ® X’) Y,

3.2 Exactly identified system

Finally, notice that exact identification requires that N; + K; = K Vi € {1,..., N}. The necessary order
condition for identification of equation (S.7) is that the number of restrictions we impose on the N + K
parameters on the LHS (of the first representation discussed above) through the normalization a! = 1

and the exclusion restrictions —i.e., (N — N;) + (K — K;)— is at least N.? That is,
N-N+K—-K;, >N < K- K; > N;,

which requires that the number of excluded exogenous variables appearing elsewhere in the system,
K — K;, is at least as large as the number of included endogenous variables, NV;. Since the equation is

just identified, the order condition holds with equality and we get

Therefore, block diagonal matrix
X' o Opur| | 20 0 05k
(IN ® X’) Z* =
Ogur -+ X' Opur -+ 2@

-~
NKXNT NTXNK

2Recall that the corresponding equations obtained from the reduced form —the first row of the full set of equations in
matrix form— comprises K linear equations on N 4+ K unknown structural parameters, so we need at least N additional

equations.

13



X'ZMD o O

Opur - X'ZM

NKxNK

is a square matrix with square, nonsingular diagonal blocks X’'Z and is therefore nonsingular. Thus, in

the case of an exactly identified system, the system-2SLS estimator simplifies to
8\2SLS _ (2*/2*)—12*/Y*
/ -1 !
_ (((IN ® X> (IN ® (X’X)‘1> (IN ® X’) Z*> Z*) <<IN ® X) (IN ® (X’X)—l) (IN ® X’) Z*) Y
-1
ZY(Iy @ X)(Iy® (X'X) ) (Iy® X’)Z*) 79Iy X)(Iy @ (X'X) ) Iy X )Y*

(Iyox)z7) (Ive (X’X)‘1>71 (z7(1v X))ilZ*’(IN @ X)(Iy ® (X'X) 1) (Iy © X) Y™

(
( )

— (v e X’)Z*>_1 (Ive (X’X)*l)_l(IN ® (X' X)) (Iy @ X')Y*
( )

Simlarly, the 3SLS estimator simplifies to

Sysrs = ((IN ® X') Z*)il (2—1 ® (X’X)—l)*1 (Z*’(IN ® X))ilZ*’(IN ®X)(5 @ (X'X) ) Iy X') Y*

= ((Ive x) Z*)il (z7e (X’X)_1>71 (= XX) ) (Ive X') Y

- ((IN ® X') Z*) Tyox) Y

= 528LS7

which coincides with the system-2SLS estimator for the exactly identified system.

4 Question 2

4.1 General derivations
Consider the MLE of (4, %) under the assumption that
iid iid

up ~ N(0,8) = v ~ N(0,9),

14



where Q = A2 A~V and v; = A~1u, is the projection error in the reduced form
yr = Ilwy + vy

with I = —A~1B.3 We can obtain the matrix representation of the reduced form by transposing and

stacking the reduced form for the T' observations:

Y = XII' +V,
where
vy
V= =UAV,
U,/T TxN

Vectorize V to obtain multivariate-normal vector?

V11
Uir

V*=vec (V) = : NN(O,Q®IT)
Un1
UNnT

NTx1
since
V11
Uir
E [V*V*/] — ]E (Ull P Vir e Un1 e UNT)
Un1
i UNT ]

3Notice that the variance of v, ©, is a function of the structural parameters in § and 3, Q (6, X).
4An alternative is to work directly with the matrix normal distribution.

15
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E [11121] E [vy,017] E [v1,0n1] E [vy;,0n7]
S~—— S———
w11 0 WIN 0
E [v17v14] E [U?T] E [v17rVn1] E [virvn7]
~—— ~—
0 w11 0 WI1N
E [Uvall] E [UN1U1T] E [U?Vl] E [’UNl’UNT]
WN1 0 WNN 0
E [UNTUM] E [UNTU1T] E [UNTUNl] E |:/U]2\]T:|
L 0 WN1 0 WNN
NTxNT
W11 Win 1 0
= &
WNy - WNN 0 . 1
NxN TXT
== Q ® IT'

Notice that
VYQe L)'V =V (Q e I )V
=V (Q V@ I)vec(V)
=V*vec (I VQ)
= vec (V) vec (V Q)

— tr (V’VQ—l)

tr (V 0! V’)

—tr (v - Xw) Q7 (v - X))

and
Q@ Ir| = | |1
— ‘Q|T 1N

16




=1Q".
Therefore, the log-likelihood is

£(6,2)=In ((27r)NT/2 Q@ | exp ( - %V*’(Q ® IT)IV*>)

=In ((WW Q""" exp ( - %tr ((v—xmye'(y - Xn')’)>>

- —gln (27) — gln(m]) - %tr ((v = xm)y! (v - xm)’)

and we can minimize the objective function

Q0,3 = g In (27) + gln (o) + o (v - xw) 07 (v - x71)')

since

argmax ¢ (J, %) = argmin — £ (6,3)
(6,%2) (6,2)

= argmin Q (4,%).
(0.%)

4.2 Recursive system

We define a recursive system as one where A is lower triangular and X is diagonal:

a 0 0 - 0 g, 0 0 - 0
The normalizations a; = 1 for i € {1,....N} further imply that A is unitriangular and so is A~

Moreover, A~! lower unitriangular implies that A~ is upper unitriangular. Therefore,
Q| = ‘Aile*h‘
= 47|z |47
~——

1 1

= [
N

= HO’ZZ
=1

17



Also, notice that

Y L1
Y-Xl'=|:|-|: |
YT T
y1 — aq 1l
vy~ Il
(y1 — M)’
| (yr — Tz7)’
and
Ql=A4x"14
Therefore,
(yr — May) Q71
(Y — X)) Q! (v — XTT')’ = : (g1 —Te1) - (yr— HwT)]
(yr — Hzp) Q71
(y1 = Man)’ Q7 (g1 —May) - (g1 —2n) Q7 (yr — Tar)
(yr —Tap) Q7 (yy —Toy) - (yr — Hop)' Q7 (yr — Hay)
and

T
Z (ys — Ty)" Q" (y, — May)
=1

o (v - Xm) Q7 (v - X))

~

(yt — (—AilB)a:t)/A’ » 14 (yt — (—AilB)a:t)

Il
E

1

-
I

(Ay, + AA™'Bx,) 71 (Ay, + AA™ Bay)

I
WE

-
Il

1

(Ay; + Bxy) »! (Ay; + Bxy)

I
N

-
Il

1

18



t=1
—1
T 01
!/ !/ .
= Z (yu Vs g — 2 5(N))
t=1
0

These results imply that we can write the objective function as

it — ()5(1)
Q6,2 = gln 27) —ln (HJ“>+;ZZ(Z/ 2 )

t=1 i=1

N T N i — 5()
:E]n(2ﬂ-)+€z O.“ _{_;Zz(yf Z )
=1

2
t=1 i=1

T yzt - Z(Z) 6(1 >

N
o 1
SN ELLRE TS D

i=1

Finally, notice that the MLE is

(3, f]) = arggin Q(6,%)

) 2
Yir — zél)lé“))

T
T 1 (
= argmin g ln (2m) Eln (04i) + B E

i
() =1 =1 “

which can be obtained by minimizing

Yie — Z(Z) 5(1)>

T
T T 1 & (
5111 (2m) + —ln (0ii) + 3 tE_l

ONN

Y

Ynt —

oy
— 25

!
sz) ISR

for each i € {1,..., N}, i.e., OLS equation by equation (MLE based on the marginal distribution of wu;).
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