Class Notes: Problem Set 5

EC337

Pinjas Albagli

Last updated: March 26, 2025

Contents

1	Son	ne useful properties	2
2	Not	tation	4
3	Que	estion 1	7
	3.1	General derivations	7
		3.1.1 2SLS estimator	7
		3.1.2 3SLS estimator	10
	3.2	Exactly identified system	13
4	Que	estion 2	14
	4.1	General derivations	14
	4.2	Recursive system	17

1 Some useful properties

1. Bilinearity and associativity of the Kronecker product:

For arbitrary conformable matrices A, B, and C and scalar k,

$$A \otimes (B+C) = A \otimes B + A \otimes C,$$

$$(B+C) \otimes A = B \otimes A + C \otimes A,$$

$$(kA) \otimes B = A \otimes (kB) = k (A \otimes B),$$

$$(A \otimes B) \otimes C = A \otimes (B \otimes C),$$

$$A \otimes 0 = 0 \otimes A = 0.$$

2. Mixed-product property of the Kronecker product:

For arbitrary conformable matrices A, B, C, and D,

$$(A \otimes B) (C \otimes D) = (AC) \otimes (BD).$$

3. Mixed Kronecker matrix-vector product:

For arbitrary conformable matrices A, B, and C,

$$\operatorname{vec}(ABC) = (C' \otimes A) \operatorname{vec}(B).$$

4. Inverse of a Kronecker product:

For arbitrary nonsingular matrices A and B,

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}.$$

5. Transpose of a Kronecker product:

For arbitrary matrices A and B,

$$(A \otimes B)' = A' \otimes B'.$$

6. Determinant of a Kronecker product:

For arbitrary $n \times n$ matrix A and $k \times k$ matrix B,

$$|A \otimes B| = |A|^k |B|^n.$$

2

7. Trace of a Kronecker product:

For arbitrary square matrices A and B,

$$\operatorname{tr}(A \otimes B) = \operatorname{tr}(A) \operatorname{tr}(B).$$

8. Vectorization is a unitary transformation (preserves the inner product):

For arbitrary $m \times n$ matrices A and B,

$$\operatorname{tr}(A'B) = \operatorname{vec}(A)' \operatorname{vec}(B).$$

9. Basic properties of the trace:

For arbitrary square matrices A and B and scalar k,

$$\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B),$$

$$\operatorname{tr}(kA) = k \operatorname{tr}(A),$$

$$\operatorname{tr}(A') = \operatorname{tr}(A),$$

$$\operatorname{tr}(I_k) = k.$$

10. The trace is invariant under cyclic permutations (the cyclic property):

For arbitrary suitably conformable matrices A, B, C, and D,

$$\operatorname{tr}(ABCD) = \operatorname{tr}(BCDA) = \operatorname{tr}(CDAB) = \operatorname{tr}(DABC).$$

11. (Some) basic properties of the determinant:

For arbitrary $n \times n$ matrices A and B and scalar k,

$$|I_k| = 1,$$
 $|kA| = k^n |A|,$
 $|A'| = |A|,$
 $|A^{-1}| = |A|^{-1} \text{ (if } |A| \neq 0),$
 $|AB| = |A| |B|.$

12. Determinant of a triangular matrix:

For arbitrary triangular matrix A with diagonal entries $\{a_{ii}\}_{i=1}^n$,

$$|A| = \prod_{i=1}^{n} a_{ii}.$$

Moreover,

$$|A| = 0 \iff \exists i \in \{1, \dots, n\} : a_{ii} = 0,$$

and

$$a_{ii} = 1 \ \forall i \in \{1, \dots, n\} \implies |A| = 1.$$

13. Basic properties of triangular matrices:

Let $A, B \in \Delta$ be two arbitrary suitably conformable lower (upper) triangular matrices and k a scalar, where Δ is the set of all lower (upper) triangular matrices and ∇ is the set of all upper (lower) triangular matrices. Then,

$$kA\in\Delta,$$

$$A+B\in\Delta,$$

$$AB\in\Delta,$$

$$A^{-1}\in\Delta \ \text{ with diagonal } \left\{a_{ii}^{-1}\right\}_{i=1}^{n} \text{ (provided } |A|\neq0\text{)},$$

$$A'\in\nabla$$

2 Notation

Consider the following system of N equations in N endogenous variables and K exogenous variables for a sample of T observations $t \in \{1, ..., T\}$

$$\tilde{a}_{1}^{1} y_{1t} + \dots + \tilde{a}_{N}^{1} y_{Nt} + \tilde{b}_{1}^{1} x_{1t} + \dots + \tilde{b}_{K}^{1} x_{Kt} = u_{1t}$$

$$(S.1)$$

:

$$\tilde{a}_{1}^{N} y_{1t} + \dots + \tilde{a}_{N}^{N} y_{Nt} + \tilde{b}_{1}^{N} x_{1t} + \dots + \tilde{b}_{K}^{N} x_{Kt} = u_{Nt}.$$
 (S.N)

Let

$$y_{t} \equiv \begin{pmatrix} y_{1t} \\ \vdots \\ y_{Nt} \end{pmatrix}_{N \times 1} x_{t} \equiv \begin{pmatrix} x_{1t} \\ \vdots \\ x_{Kt} \end{pmatrix}_{K \times 1} u_{t} \equiv \begin{pmatrix} u_{1t} \\ \vdots \\ u_{Nt} \end{pmatrix}_{N \times 1}$$

$$\tilde{A} \equiv \begin{bmatrix} \tilde{a}_1^1 & \cdots & \tilde{a}_N^1 \\ \vdots & \ddots & \vdots \\ \tilde{a}_1^N & \cdots & \tilde{a}_N^N \end{bmatrix}_{N \times N} \qquad \qquad \tilde{B} \equiv \begin{bmatrix} \tilde{b}_1^1 & \cdots & \tilde{b}_K^1 \\ \vdots & \ddots & \vdots \\ \tilde{b}_1^N & \cdots & \tilde{b}_K^N \end{bmatrix}_{N \times K}$$

Then, we can compactly write the system for observation t as

$$\tilde{A}y_t + \tilde{B}x_t = u_t \tag{1}$$

and, transposing and stacking the system for the T observations, we obtain the matrix equation

$$Y\tilde{A}' + X\tilde{B}' = U, (2)$$

where

$$Y \equiv egin{bmatrix} y_{11} & \cdots & y_{N1} \\ \vdots & \ddots & \vdots \\ y_{1T} & \cdots & y_{NT} \end{bmatrix}_{T imes N} = egin{bmatrix} y_1' \\ \vdots \\ y_T' \end{bmatrix}$$

$$X \equiv \begin{bmatrix} x_{11} & \cdots & x_{K1} \\ \vdots & \ddots & \vdots \\ x_{1T} & \cdots & x_{KT} \end{bmatrix}_{T \times K} = \begin{bmatrix} x_1' \\ \vdots \\ x_T' \end{bmatrix}$$

$$U \equiv \begin{bmatrix} u_{11} & \cdots & u_{N1} \\ \vdots & \ddots & \vdots \\ u_{1T} & \cdots & u_{NT} \end{bmatrix}_{T \times N} = \begin{bmatrix} u'_1 \\ \vdots \\ u'_T \end{bmatrix}$$

As discussed in the lecture notes, the system is not identified without further restrictions on the structural parameters

$$\tilde{\delta} \equiv \begin{bmatrix} \operatorname{vec}(\tilde{A}) \\ \operatorname{vec}(\tilde{B}) \end{bmatrix}_{N(N+K)\times 1}.$$

From now on we will suppose the system is identified through the imposition of

- (i) N normalizations $\tilde{a}_i^i = 1, i \in \{1, \dots, N\}$
- (ii) At least N(N-1) exclusion restrictions of the form $\tilde{a}^i_j=0$ or $\tilde{b}^i_k=0,\ i,j\in\{1,\ldots,N\}.\ i\neq j,$ $k\in\{1,\ldots,K\}.$

For $i \in \{1, \ldots, N\}$, define:

- $y_t^{(i)}$: $N_i \times 1$ subvector of y_t , containing $N_i \leq N-1$ of the N-1 endogenous variables in y_t excluding y_{it} —i.e., the endogenous variable on the LHS of equation (S.i). The endogenous variables y_{jt} (where $j \neq i$) included in $y_t^{(i)}$ are those with $\tilde{a}_j^i \neq 0$.
- $a^{(i)}$: $N_i \times 1$ subvector of

$$a^i \equiv egin{pmatrix} a_1^i \ dots \ a_N^i \end{pmatrix}_{N imes}$$

corresponding to the coefficients on the endogenous variables y_{jt} in $y_t^{(i)}$, i.e., those with $a_j^i \neq 0$, where $a_j^i \equiv -\tilde{a}_j^i$ (for $i \neq j$).

- $x_t^{(i)}$: $K_i \times 1$ subvector of x_t , containing $K_i \leq K$ of the K exogenous variables in x_t . These are the exogenous variables on the RHS of equation (S.i). The exogenous variables x_{kt} included in $x_t^{(i)}$ are those with $\tilde{b}_k^i \neq 0$.
- $b^{(i)}$: $K_i \times 1$ subvector of

$$b^i \equiv \begin{pmatrix} b_1^i \\ \vdots \\ b_K^i \end{pmatrix}_{K imes 1}$$

corresponding to the coefficients on the exogenous variables x_{kt} in $x_t^{(i)}$, i.e., those with $b_k^i \neq 0$, where $b_k^i \equiv -\tilde{b}_k^i$.

Then, we can write the system after imposing the normalizations and exclusion restrictions as

$$y_{1t} = y_t^{(1)'} a^{(1)} + x_t^{(1)'} b^{(1)} + u_{1t}$$
(S.1)

:

$$y_{Nt} = y_t^{(N)'} a^{(N)} + x_t^{(N)'} b^{(N)} + u_{Nt}.$$
(S.N)

Now, let

$$z_t^{(i)} \equiv \begin{pmatrix} y_t^{(i)} \\ x_t^{(i)} \end{pmatrix}_{(N_i + K_i) \times 1}$$

and

$$\delta^{(i)} \equiv egin{pmatrix} a^{(i)} \ b^{(i)} \end{pmatrix}_{(N_i + K_i) imes 1}$$

so that equation (S.i) can be written as

$$y_{it} = z_t^{(i)'} \delta^{(i)} + u_{it}$$

for $i \in \{1, ..., N\}$. Stacking equation (S.i) for the T observations $t \in \{1, ..., T\}$, we obtain the matrix form

$$Y_i = Z^{(i)}\delta^{(i)} + U_i,$$

where Y_i and U_i are the i^{th} columns of matrices Y and U, respectively,

$$Z^{(i)} \equiv \begin{bmatrix} Y^{(i)} & X^{(i)} \end{bmatrix}_{T \times (N_i + K_i)}$$

$$Y^{(i)} \equiv \begin{bmatrix} y_1^{(i)\prime} \\ \vdots \\ y_T^{(i)\prime} \end{bmatrix}_{_{T \times N_i}}$$

$$X^{(i)} \equiv egin{bmatrix} x_1^{(i)\prime} \ dots \ x_T^{(i)\prime} \end{bmatrix}_{T imes K_{ec{e}}} \ .$$

3 Question 1

3.1 General derivations

3.1.1 2SLS estimator

First, consider equation (S.i) alone, where $i \in \{1, ..., N\}$. The goal here is estimation of $\delta^{(i)}$ and, as stated above, identification is assumed. Since we are interested in the i^{th} column of Y, Y_i , we need excluded instruments for $Y^{(i)}$ — $X^{(i)}$ act as included instruments for themselves.

Solving for Y in equation (2), we obtain the reduced form

$$Y = X\Pi' + V, (3)$$

where

$$\Pi' \equiv -\tilde{B}'\tilde{A}'^{-1}$$

and

$$V \equiv U\tilde{A}'^{-1}.$$

Notice that exogeneity of X implies that

$$\mathbb{E}\left[X'V\right] = \mathbb{E}\left[X'U\right]\tilde{A}'^{-1}$$
$$= 0_{K \times N},$$

so $\widehat{Y} = X\widehat{\Pi}'$ and U —where $\widehat{\Pi}' = (X'X)^{-1}X'Y$ is the OLS estimator of Π' in multivariate regression (3)— are asymptotically uncorrelated since $\widehat{\Pi} \xrightarrow{p} \Pi$. Therefore, for the best linear predictor of $Y^{(i)}$, $\widehat{Y}^{(i)}$, is a valid excluded instrument, and the full matrix of instruments is

$$\widehat{Z}^{(i)} \equiv \begin{bmatrix} \widehat{Y}^{(i)} & X^{(i)} \end{bmatrix}_{T \times (N_i + K_i)}.$$

Note that $\widehat{Y}^{(i)}$ is a submatrix of

$$\widehat{Y} = X\widehat{\Pi}'$$

$$= X(X'X)^{-1}X'Y$$

$$= X(X'X)^{-1}X' \begin{bmatrix} Y_1 & \cdots & Y_N \end{bmatrix}$$

$$= \begin{bmatrix} X(X'X)^{-1}X'Y_1 & \cdots & X(X'X)^{-1}X'Y_N \end{bmatrix},$$

formed by the N_i columns corresponding to the variables in $y_t^{(i)}$, i.e.,

$$\widehat{Y}^{(i)} = X(X'X)^{-1}X'Y^{(i)}.$$

Moreover, since
$$X^{(i)} \in \operatorname{Col}(X) \implies X(X'X)^{-1}X'X^{(i)} = X^{(i)},$$

$$\widehat{Y}^{(i)\prime}X^{(i)} = \left(X(X'X)^{-1}X'Y^{(i)}\right)'X^{(i)}$$

$$= Y^{(i)\prime}X(X'X)^{-1}X'X^{(i)}$$

$$= Y^{(i)\prime}X^{(i)}$$

and

$$\widehat{Y}^{(i)'}\widehat{Y}^{(i)} = \left(X(X'X)^{-1}X'Y^{(i)}\right)'X(X'X)^{-1}X'Y^{(i)}
= Y^{(i)'}X(X'X)^{-1}X'X(X'X)^{-1}X'Y^{(i)}
= Y^{(i)'}X(X'X)^{-1}X'Y^{(i)}
= \widehat{Y}^{(i)'}Y^{(i)}
= Y^{(i)'}\widehat{Y}^{(i)}.$$

Therefore,

$$\widehat{Z}^{(i)\prime}Z^{(i)} = \begin{bmatrix} \widehat{Y}^{(i)\prime} \\ X^{(i)\prime} \end{bmatrix} \begin{bmatrix} Y^{(i)} & X^{(i)} \end{bmatrix}$$

$$= \begin{bmatrix} \widehat{Y}^{(i)}'Y^{(i)} & \widehat{Y}^{(i)}'X^{(i)} \\ X^{(i)}'Y^{(i)} & X^{(i)}'X^{(i)} \end{bmatrix}$$

$$= \begin{bmatrix} \widehat{Y}^{(i)}'\widehat{Y}^{(i)} & \widehat{Y}^{(i)}'X^{(i)} \\ X^{(i)}'\widehat{Y}^{(i)} & X^{(i)}'X^{(i)} \end{bmatrix}$$

$$= \begin{bmatrix} \widehat{Y}^{(i)}' \\ X^{(i)}' \end{bmatrix} \begin{bmatrix} \widehat{Y}^{(i)} & X^{(i)} \end{bmatrix}$$

$$= \widehat{Z}^{(i)}'\widehat{Z}^{(i)}.$$

so the IV estimator is

$$\widehat{\delta}_{2\text{SLS}}^{(i)} = (\widehat{Z}^{(i)} Z^{(i)})^{-1} \widehat{Z}^{(i)} Y_i$$
$$= (\widehat{Z}^{(i)} \widehat{Z}^{(i)})^{-1} \widehat{Z}^{(i)} Y_i,$$

i.e., the OLS estimator of the regression of Y_i on $\widehat{Y}^{(i)}$ and $X^{(i)}$.

Now, consider estimation of the full system. To this end, write the system in matrix form by stacking the N previously derived matrix equations

$$Y_i = Z^{(i)}\delta^{(i)} + U_i$$

for $i \in \{1, ..., N\}$ as follows:

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_N \end{pmatrix}_{NT\times 1} = \begin{bmatrix} Z^{(1)} & \cdots & 0_{T\times (N_N+K_N)} \\ \vdots & \ddots & \vdots \\ 0_{T\times (N_1+K_1)} & \cdots & Z^{(N)} \end{bmatrix}_{NT\times \left(\sum\limits_{i=1}^N N_i+K_i\right)} \begin{pmatrix} \delta^{(1)} \\ \vdots \\ \delta^{(N)} \end{pmatrix}_{\begin{pmatrix} \sum\limits_{i=1}^N N_i+K_i \end{pmatrix} \times 1} + \begin{pmatrix} U_1 \\ \vdots \\ U_N \end{pmatrix}_{NT\times 1}$$

$$\iff$$
 $Y^* = Z^*\delta + U^*.$

where Y^* , Z^* , δ , and U^* are defined in the obvious way. Similarly, let

$$\widehat{Z}^* \equiv \begin{bmatrix} \widehat{Z}^{(1)} & \cdots & 0_{T \times (N_N + K_N)} \\ \vdots & \ddots & \vdots \\ 0_{T \times (N_1 + K_1)} & \cdots & \widehat{Z}^{(N)} \end{bmatrix}_{NT \times \begin{pmatrix} \sum \\ i=1 \\ i=1 \end{pmatrix}} N_i + K_i$$

¹Note that $Y^* = \text{vec}(Y)$.

$$= \begin{bmatrix} X(X'X)^{-1}X'Z^{(1)} & \cdots & 0_{T\times(N_N+K_N)} \\ \vdots & \ddots & \vdots \\ 0_{T\times(N_1+K_1)} & \cdots & X(X'X)^{-1}X'Z^{(N)} \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} X(X'X)^{-1}X' & \cdots & 0_{T\times T} \\ \vdots & \ddots & \vdots \\ 0_{T\times T} & \cdots & X(X'X)^{-1}X' \end{bmatrix}}_{NT\times NT} \underbrace{\begin{bmatrix} Z^{(1)} & \cdots & 0_{T\times(N_N+K_N)} \\ \vdots & \ddots & \vdots \\ 0_{T\times(N_1+K_1)} & \cdots & Z^{(N)} \end{bmatrix}}_{NT\times \left(\sum_{i=1}^{N}N_i+K_i\right)}$$

$$= \left(I_N \otimes X(X'X)^{-1}X'\right)Z^*$$

$$= \left(I_N \otimes X\left((X'X)^{-1}X'\right)Z^*$$

$$= \left(I_N \otimes X\right)\left(I_N \otimes (X'X)^{-1}X'\right)Z^*$$

$$= \left(I_N \otimes X\right)\left(I_N \otimes (X'X)^{-1}X'\right)Z^*$$

$$= \left(I_N \otimes X\right)\left(I_N \otimes (X'X)^{-1}X'\right)Z^*$$

$$= \left(I_N \otimes X\right)\left(I_N \otimes (X'X)^{-1}X'\right)Z^*.$$

Finally, following analogous arguments to those discussed above for the single equation case, the system-2SLS estimator is the OLS estimator of the regression of Y^* on \widehat{Z}^* ,

$$\widehat{\delta}_{2SLS} = (\widehat{Z}^{*\prime} Z^*)^{-1} \widehat{Z}^{*\prime} Y^*$$
$$= (\widehat{Z}^{*\prime} \widehat{Z}^*)^{-1} \widehat{Z}^{*\prime} Y^*.$$

3.1.2 3SLS estimator

Now, to obtain the 3SLS estimator —which amounts to a GLS-style transformation—, notice that the assumption that

$$u_t \stackrel{iid}{\sim} (0, \Sigma)$$

implies that, for $i, j \in \{1, ..., N\}$,

$$\mathbb{E}\left[U_iU_j'\right] = \mathbb{E}\left[\begin{pmatrix} u_{i1} \\ \vdots \\ u_{iT} \end{pmatrix} \begin{pmatrix} u_{j1} & \cdots & u_{jT} \end{pmatrix}\right]$$

$$= \begin{bmatrix} \mathbb{E}\left[u_{i1}u_{j1}\right] & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbb{E}\left[u_{iT}u_{jT}\right] \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{ij} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{ij} \end{bmatrix}$$

$$= \sigma_{ij} I_T,$$

where

$$\Sigma \equiv \begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1N} \\ \vdots & \ddots & \vdots \\ \sigma_{N1} & \cdots & \sigma_{NN} \end{bmatrix}.$$

Therefore,

$$\mathbb{E}\left[U^*U^{*'}\right] = \mathbb{E}\left[\begin{pmatrix} U_1 \\ \vdots \\ U_N \end{pmatrix} \begin{pmatrix} U_1' & \cdots & U_N' \end{pmatrix}\right]$$

$$= \begin{bmatrix} \mathbb{E}\left[U_1U_1'\right] & \cdots & \mathbb{E}\left[U_1U_N'\right] \\ \vdots & \ddots & \vdots \\ \mathbb{E}\left[U_NU_1'\right] & \cdots & \mathbb{E}\left[U_NU_N'\right] \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{11}I_T & \cdots & \sigma_{1N}I_T \\ \vdots & \ddots & \vdots \\ \sigma_{N1}I_T & \cdots & \sigma_{NN}I_T \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{11} & \cdots & \sigma_{1N} \\ \vdots & \ddots & \vdots \\ \sigma_{N1} & \cdots & \sigma_{NN} \end{bmatrix} \otimes I_T$$

$$= \Sigma \otimes I_T.$$

Next, applying the GLS-style transformation,

$$\left(\Sigma^{-1/2}\otimes I_T\right)Y^* = \left(\Sigma^{-1/2}\otimes I_T\right)Z^*\delta + \left(\Sigma^{-1/2}\otimes I_T\right)U^*$$

with

$$\mathbb{E}\left[\left(\Sigma^{-1/2}\otimes I_{T}\right)U^{*}\left(\left(\Sigma^{-1/2}\otimes I_{T}\right)U^{*}\right)'\right] = \left(\Sigma^{-1/2}\otimes I_{T}\right)\mathbb{E}\left[U^{*}U^{*\prime}\right]\left(\Sigma^{-1/2}\otimes I_{T}\right)'$$

$$= \left(\Sigma^{-1/2}\otimes I_{T}\right)\left(\Sigma\otimes I_{T}\right)\left(\Sigma^{-1/2\prime}\otimes I_{T}'\right)$$

$$= \left(\Sigma^{-1/2}\Sigma\otimes I_{T}I_{T}\right)\left(\Sigma^{-1/2}\otimes I_{T}\right)$$

$$= \left(\Sigma^{-1/2}\Sigma\Sigma^{-1/2}\otimes I_{T}I_{T}I_{T}\right)$$

$$= \left(I_{N}\otimes I_{T}\right)$$

$$= I_{NT},$$

we obtain the 3SLS estimator

$$\begin{split} \widehat{\delta}_{\mathrm{SSLS}} &= \left(\left(\left(\Sigma^{-1/2} \otimes I_{T} \right) \widehat{Z}^{*} \right)' \left(\Sigma^{-1/2} \otimes I_{T} \right) \widehat{Z}^{*} \right)^{-1} \left(\left(\Sigma^{-1/2} \otimes I_{T} \right) \widehat{Z}^{*} \right)' \left(\Sigma^{-1/2} \otimes I_{T} \right) Y^{*} \\ &= \left(\widehat{Z}^{*\prime} \left(\Sigma^{-1/2\prime} \otimes I_{T}' \right) \left(\Sigma^{-1/2} \otimes I_{T} \right) \widehat{Z}^{*} \right)^{-1} \widehat{Z}^{*\prime} \left(\Sigma^{-1/2\prime} \otimes I_{T}' \right) \left(\Sigma^{-1/2} \otimes I_{T} \right) Y^{*} \\ &= \left(\widehat{Z}^{*\prime} \left(\Sigma^{-1/2} \Sigma^{-1/2} \otimes I_{T} I_{T} \right) \widehat{Z}^{*} \right)^{-1} \widehat{Z}^{*\prime} \left(\Sigma^{-1/2} \Sigma^{-1/2} \otimes I_{T} I_{T} \right) Y^{*} \\ &= \left(\widehat{Z}^{*\prime} \left(\Sigma^{-1} \otimes I_{T} \right) \widehat{Z}^{*} \right)^{-1} \widehat{Z}^{*\prime} \left(\Sigma^{-1} \otimes I_{T} \right) Y^{*} \\ &= \left(Z^{*\prime} X(X'X)^{-1} X' \left(\Sigma^{-1} \otimes I_{T} \right) X(X'X)^{-1} X' Z^{*} \right)^{-1} Z^{*\prime} X(X'X)^{-1} X' \left(\Sigma^{-1} \otimes I_{T} \right) Y^{*} \\ &= \left(Z^{*\prime} \left(1 \otimes X(X'X)^{-1} X' \right) \left(\Sigma^{-1} \otimes I_{T} \right) X(X'X)^{-1} X' Z^{*} \right)^{-1} Z^{*\prime} \left(1 \otimes X(X'X)^{-1} X' \right) \left(\Sigma^{-1} \otimes I_{T} \right) Y^{*} \\ &= \left(Z^{*\prime} \left(\Sigma^{-1} \otimes X(X'X)^{-1} X' \right) X(X'X)^{-1} X' Z^{*} \right)^{-1} Z^{*\prime} \left(\Sigma^{-1} \otimes X(X'X)^{-1} X' \right) Y^{*} \\ &= \left(Z^{*\prime} \left(\Sigma^{-1} \otimes X(X'X)^{-1} X' \right) \left(1 \otimes X(X'X)^{-1} X' \right) Z^{*} \right)^{-1} Z^{*\prime} \left(\Sigma^{-1} \otimes X(X'X)^{-1} X' \right) Y^{*} \\ &= \left(Z^{*\prime} \left(\Sigma^{-1} \otimes X(X'X)^{-1} X' \right) X(X'X)^{-1} X' \right) Z^{*} \right)^{-1} Z^{*\prime} \left(\Sigma^{-1} \otimes X(X'X)^{-1} X' \right) Y^{*} \end{split}$$

$$= \left(Z^{*\prime} \Big(\Sigma^{-1} \otimes X(X'X)^{-1} X' \Big) Z^{*} \right)^{-1} Z^{*\prime} \Big(\Sigma^{-1} \otimes X(X'X)^{-1} X' \Big) Y^{*}$$

$$= \left(Z^{*\prime} \Big(I_{N} \Sigma^{-1} \otimes X(X'X)^{-1} X' \Big) Z^{*} \right)^{-1} Z^{*\prime} \Big(I_{N} \Sigma^{-1} \otimes X(X'X)^{-1} X' \Big) Y^{*}$$

$$= \left(Z^{*\prime} \Big(I_{N} \otimes X \Big) \Big(\Sigma^{-1} \otimes (X'X)^{-1} X' \Big) Z^{*} \right)^{-1} Z^{*\prime} \Big(I_{N} \otimes X \Big) \Big(\Sigma^{-1} \otimes (X'X)^{-1} X' \Big) Y^{*}$$

$$= \left(Z^{*\prime} \Big(I_{N} \otimes X \Big) \Big(\Sigma^{-1} I_{N} \otimes (X'X)^{-1} X' \Big) Z^{*} \right)^{-1} Z^{*\prime} \Big(I_{N} \otimes X \Big) \Big(\Sigma^{-1} I_{N} \otimes (X'X)^{-1} X' \Big) Y^{*}$$

$$= \left(Z^{*\prime} \Big(I_{N} \otimes X \Big) \Big(\Sigma^{-1} \otimes (X'X)^{-1} \Big) \Big(I_{N} \otimes X' \Big) Z^{*} \right)^{-1} Z^{*\prime} \Big(I_{N} \otimes X \Big) \Big(\Sigma^{-1} \otimes (X'X)^{-1} \Big) \Big(I_{N} \otimes X' \Big) Y^{*}.$$

3.2 Exactly identified system

Finally, notice that exact identification requires that $N_i + K_i = K \ \forall i \in \{1, ..., N\}$. The necessary order condition for identification of equation (S.i) is that the number of restrictions we impose on the N+K parameters on the LHS (of the first representation discussed above) through the normalization $\tilde{a}_i^i = 1$ and the exclusion restrictions —i.e., $(N-N_i) + (K-K_i)$ — is at least $N.^2$ That is,

$$N - N_i + K - K_i \ge N \iff K - K_i \ge N_i$$

which requires that the number of excluded exogenous variables appearing elsewhere in the system, $K - K_i$, is at least as large as the number of included endogenous variables, N_i . Since the equation is just identified, the order condition holds with equality and we get

$$K - K_i = N_i \iff N_i + K_i = K.$$

Therefore, block diagonal matrix

$$(I_N \otimes X')Z^* = \underbrace{\begin{bmatrix} X' & \cdots & 0_{K \times T} \\ \vdots & \ddots & \vdots \\ 0_{K \times T} & \cdots & X' \end{bmatrix}}_{NK \times NT} \underbrace{\begin{bmatrix} Z^{(1)} & \cdots & 0_{T \times K} \\ \vdots & \ddots & \vdots \\ 0_{T \times K} & \cdots & Z^{(N)} \end{bmatrix}}_{NT \times NK}$$

²Recall that the corresponding equations obtained from the reduced form —the first row of the full set of equations in matrix form— comprises K linear equations on N + K unknown structural parameters, so we need at least N additional equations.

$$= \underbrace{\begin{bmatrix} X'Z^{(1)} & \cdots & 0_{K\times K} \\ \vdots & \ddots & \vdots \\ 0_{K\times K} & \cdots & X'Z^{(N)} \end{bmatrix}}_{NK\times NK}$$

is a square matrix with square, nonsingular diagonal blocks $X'Z^{(i)}$ and is therefore nonsingular. Thus, in the case of an exactly identified system, the system-2SLS estimator simplifies to

$$\begin{split} \widehat{\delta}_{2\mathrm{SLS}} &= (\widehat{Z}^{*\prime}Z^{*})^{-1}\widehat{Z}^{*\prime}Y^{*} \\ &= \left(\left(\left(I_{N} \otimes X \right) \left(I_{N} \otimes (X'X)^{-1} \right) \left(I_{N} \otimes X' \right) Z^{*} \right)^{\prime} Z^{*} \right)^{-1} \left(\left(I_{N} \otimes X \right) \left(I_{N} \otimes (X'X)^{-1} \right) \left(I_{N} \otimes X' \right) Z^{*} \right)^{\prime} Y^{*} \\ &= \left(Z^{*\prime} \left(I_{N} \otimes X \right) \left(I_{N} \otimes (X'X)^{-1} \right) \left(I_{N} \otimes X' \right) Z^{*} \right)^{-1} Z^{*\prime} \left(I_{N} \otimes X \right) \left(I_{N} \otimes (X'X)^{-1} \right) \left(I_{N} \otimes X' \right) Y^{*} \\ &= \left(\left(I_{N} \otimes X' \right) Z^{*} \right)^{-1} \left(I_{N} \otimes (X'X)^{-1} \right)^{-1} \left(Z^{*\prime} \left(I_{N} \otimes X \right) \right)^{-1} Z^{*\prime} \left(I_{N} \otimes X \right) \left(I_{N} \otimes (X'X)^{-1} \right) \left(I_{N} \otimes X' \right) Y^{*} \\ &= \left(\left(I_{N} \otimes X' \right) Z^{*} \right)^{-1} \left(I_{N} \otimes (X'X)^{-1} \right)^{-1} \left(I_{N} \otimes (X'X)^{-1} \right) \left(I_{N} \otimes X' \right) Y^{*} \\ &= \left(\left(I_{N} \otimes X' \right) Z^{*} \right)^{-1} \left(I_{N} \otimes X' \right) Y^{*}. \end{split}$$

Simlarly, the 3SLS estimator simplifies to

$$\begin{split} \widehat{\delta}_{3\mathrm{SLS}} &= \left(\left(I_N \otimes X' \right) Z^* \right)^{-1} \left(\Sigma^{-1} \otimes (X'X)^{-1} \right)^{-1} \left(Z^{*\prime} \left(I_N \otimes X \right) \right)^{-1} Z^{*\prime} \left(I_N \otimes X \right) \left(\Sigma^{-1} \otimes (X'X)^{-1} \right) \left(I_N \otimes X' \right) Y^* \\ &= \left(\left(I_N \otimes X' \right) Z^* \right)^{-1} \left(\Sigma^{-1} \otimes (X'X)^{-1} \right)^{-1} \left(\Sigma^{-1} \otimes (X'X)^{-1} \right) \left(I_N \otimes X' \right) Y^* \\ &= \left(\left(I_N \otimes X' \right) Z^* \right)^{-1} \left(I_N \otimes X' \right) Y^* \\ &= \widehat{\delta}_{2\mathrm{SLS}}, \end{split}$$

which coincides with the system-2SLS estimator for the exactly identified system.

4 Question 2

4.1 General derivations

Consider the MLE of (δ, Σ) under the assumption that

$$u_t \stackrel{iid}{\sim} N(0,\Sigma) \implies v_t \stackrel{iid}{\sim} N(0,\Omega),$$

where $\Omega = \tilde{A}^{-1}\Sigma\tilde{A}^{-1\prime}$ and $v_t \equiv \tilde{A}^{-1}u_t$ is the projection error in the reduced form

$$y_t = \Pi x_t + v_t$$

with $\Pi \equiv -\tilde{A}^{-1}\tilde{B}$. We can obtain the matrix representation of the reduced form by transposing and stacking the reduced form for the T observations:

$$Y = X\Pi' + V,$$

where

$$V \equiv \begin{pmatrix} v_1' \\ \vdots \\ v_T' \end{pmatrix}_{T \times N} = U\tilde{A}^{-1}'.$$

Vectorize V to obtain multivariate-normal vector⁴

$$V^* \equiv \operatorname{vec}(V) = \begin{pmatrix} v_{11} \\ \vdots \\ v_{1T} \\ \vdots \\ v_{N1} \\ \vdots \\ v_{NT} \end{pmatrix}_{NT \times 1} \sim N(0, \Omega \otimes I_T)$$

since

$$\mathbb{E}\left[V^*V^{*\prime}\right] = \mathbb{E}\left[\begin{pmatrix} v_{11} \\ \vdots \\ v_{1T} \\ \vdots \\ v_{N1} \\ \vdots \\ v_{NT} \end{pmatrix} \left(v_{11} & \cdots & v_{1T} & \cdots & v_{N1} & \cdots & v_{NT} \right)\right]$$

³Notice that the variance of v_t , Ω , is a function of the structural parameters in δ and Σ , $\Omega(\delta, \Sigma)$.

⁴An alternative is to work directly with the matrix normal distribution.

$$= \begin{bmatrix} \underbrace{\mathbb{E}\begin{bmatrix} v_{11}^2 \end{bmatrix}}_{\omega_{11}} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{11}v_{1T} \end{bmatrix}}_{0} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{11}v_{N1} \end{bmatrix}}_{\omega_{1N}} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{11}v_{NT} \end{bmatrix}}_{0} \end{bmatrix}$$

$$\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots$$

$$\underbrace{\mathbb{E}\begin{bmatrix} v_{1T}v_{11} \end{bmatrix}}_{0} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{1T}^2 \end{bmatrix}}_{\omega_{11}} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{1T}v_{N1} \end{bmatrix}}_{0} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{1T}v_{NT} \end{bmatrix}}_{\omega_{1N}} \end{bmatrix}$$

$$\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots$$

$$\underbrace{\mathbb{E}\begin{bmatrix} v_{N1}v_{11} \end{bmatrix}}_{\omega_{N1}} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{N1}v_{1T} \end{bmatrix}}_{0} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{N1}^2 \end{bmatrix}}_{\omega_{NN}} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{N1}v_{NT} \end{bmatrix}}_{0} \end{bmatrix}$$

$$\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots$$

$$\underbrace{\mathbb{E}\begin{bmatrix} v_{NT}v_{11} \end{bmatrix}}_{0} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{NT}v_{1T} \end{bmatrix}}_{\omega_{N1}} & \cdots & \underbrace{\mathbb{E}\begin{bmatrix} v_{NT}v_{N1} \end{bmatrix}}_{\omega_{NN}} \end{bmatrix}$$

 $NT \times NT$

$$= \underbrace{\begin{bmatrix} \omega_{11} & \cdots & \omega_{1N} \\ \vdots & \ddots & \vdots \\ \omega_{N1} & \cdots & \omega_{NN} \end{bmatrix}}_{N \times N} \otimes \underbrace{\begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}}_{T \times T}$$

$$=\Omega\otimes I_{T}.$$

Notice that

$$V^{*\prime}(\Omega \otimes I_{T})^{-1}V^{*} = V^{*\prime} \left(\Omega^{-1} \otimes I_{T}^{-1}\right) V^{*}$$

$$= V^{*\prime} \left(\Omega^{-1\prime} \otimes I_{T}\right) \operatorname{vec}\left(V\right)$$

$$= V^{*\prime} \operatorname{vec}\left(I_{T} V \Omega^{-1}\right)$$

$$= \operatorname{vec}\left(V\right)' \operatorname{vec}\left(V \Omega^{-1}\right)$$

$$= \operatorname{tr}\left(V' V \Omega^{-1}\right)$$

$$= \operatorname{tr}\left(V \Omega^{-1} V'\right)$$

$$= \operatorname{tr}\left(V \Omega^{-1} V'\right)$$

and

$$|\Omega \otimes I_T| = |\Omega|^T |I_T|^N$$
$$= |\Omega|^T 1^N$$

$$= |\Omega|^T$$
.

Therefore, the log-likelihood is

$$\ell\left(\delta, \Sigma\right) = \ln\left((2\pi)^{-NT/2} \left|\Omega \otimes I_T\right|^{-1/2} \exp\left(-\frac{1}{2}V^{*\prime}(\Omega \otimes I_T)^{-1}V^*\right)\right)$$

$$= \ln\left((2\pi)^{-NT/2} \left|\Omega\right|^{-T/2} \exp\left(-\frac{1}{2}\operatorname{tr}\left((Y - X\Pi')\Omega^{-1}(Y - X\Pi')'\right)\right)\right)$$

$$= -\frac{NT}{2}\ln\left(2\pi\right) - \frac{T}{2}\ln\left(|\Omega|\right) - \frac{1}{2}\operatorname{tr}\left((Y - X\Pi')\Omega^{-1}(Y - X\Pi')'\right)$$

and we can minimize the objective function

$$Q\left(\delta,\Sigma\right) = \frac{NT}{2}\ln\left(2\pi\right) + \frac{T}{2}\ln\left(|\Omega|\right) + \frac{1}{2}\operatorname{tr}\left(\left(Y - X\Pi'\right)\Omega^{-1}\left(Y - X\Pi'\right)'\right)$$

since

$$\begin{split} \mathop{\arg\max}_{(\delta,\Sigma)} \, \ell \left(\delta, \Sigma \right) &= \mathop{\arg\min}_{(\delta,\Sigma)} \, - \ell \left(\delta, \Sigma \right) \\ &= \mathop{\arg\min}_{(\delta,\Sigma)} \, Q \left(\delta, \Sigma \right). \end{split}$$

4.2 Recursive system

We define a recursive system as one where A is lower triangular and Σ is diagonal:

$$ilde{A} = egin{bmatrix} ilde{a}_1^1 & 0 & 0 & \cdots & 0 \ ilde{a}_1^2 & ilde{a}_2^2 & 0 & \cdots & 0 \ dots & dots & dots & \ddots & dots \ ilde{a}_1^N & ilde{a}_2^N & ilde{a}_3^N & \cdots & ilde{a}_N^N \end{bmatrix} \hspace{1cm} \Sigma = egin{bmatrix} \sigma_{11} & 0 & 0 & \cdots & 0 \ 0 & \sigma_{22} & 0 & \cdots & 0 \ dots & dots & dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \cdots & \sigma_{NN} \end{bmatrix}.$$

The normalizations $\tilde{a}_{ii}=1$ for $i\in\{1,\ldots,N\}$ further imply that A is unitriangular and so is A^{-1} . Moreover, A^{-1} lower unitriangular implies that A^{-1} is upper unitriangular. Therefore,

$$|\Omega| = |A^{-1}\Sigma A^{-1}|$$

$$= |A^{-1}| |\Sigma| |A^{-1}|$$

$$= |\Sigma|$$

$$= |\Sigma|$$

$$= \prod_{i=1}^{N} \sigma_{ii}.$$

Also, notice that

$$Y - X\Pi' = \begin{bmatrix} y_1' \\ \vdots \\ y_T' \end{bmatrix} - \begin{bmatrix} x_1' \\ \vdots \\ x_T' \end{bmatrix} \Pi'$$

$$= \begin{bmatrix} y_1' - x_1'\Pi' \\ \vdots \\ y_T' - x_T'\Pi' \end{bmatrix}$$

$$= \begin{bmatrix} (y_1 - \Pi x_1)' \\ \vdots \\ (y_T - \Pi x_T)' \end{bmatrix}$$

and

$$\Omega^{-1} = A' \Sigma^{-1} A$$

Therefore,

$$(Y - X\Pi') \Omega^{-1} (Y - X\Pi')' = \begin{bmatrix} (y_1 - \Pi x_1)' \Omega^{-1} \\ \vdots \\ (y_T - \Pi x_T)' \Omega^{-1} \end{bmatrix} [(y_1 - \Pi x_1) \cdots (y_T - \Pi x_T)]$$

$$= \begin{bmatrix} (y_1 - \Pi x_1)' \Omega^{-1} (y_1 - \Pi x_1) & \cdots & (y_1 - \Pi x_1)' \Omega^{-1} (y_T - \Pi x_T) \\ \vdots & \ddots & \vdots \\ (y_T - \Pi x_T)' \Omega^{-1} (y_1 - \Pi x_1) & \cdots & (y_T - \Pi x_T)' \Omega^{-1} (y_T - \Pi x_T) \end{bmatrix}$$

and

$$\operatorname{tr}\left(\left(Y - X\Pi'\right)\Omega^{-1}\left(Y - X\Pi'\right)'\right) = \sum_{t=1}^{T} \left(y_t - \Pi x_t\right)'\Omega^{-1}\left(y_t - \Pi x_t\right)$$

$$= \sum_{t=1}^{T} \left(y_t - \left(-A^{-1}B\right)x_t\right)'A'\Sigma^{-1}A\left(y_t - \left(-A^{-1}B\right)x_t\right)$$

$$= \sum_{t=1}^{T} \left(Ay_t + AA^{-1}Bx_t\right)'\Sigma^{-1}\left(Ay_t + AA^{-1}Bx_t\right)$$

$$= \sum_{t=1}^{T} \left(Ay_t + Bx_t\right)'\Sigma^{-1}\left(Ay_t + Bx_t\right)$$

$$= \sum_{t=1}^{T} u_t' \Sigma^{-1} u_t$$

$$= \sum_{t=1}^{T} \left(y_{1t} - z_t^{(1)'} \delta^{(1)} \cdots y_{Nt} - z_t^{(N)'} \delta^{(N)} \right) \begin{bmatrix} \sigma_{11}^{-1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{NN}^{-1} \end{bmatrix} \begin{pmatrix} y_{1t} - z_t^{(1)'} \delta^{(1)} \\ \vdots \\ y_{Nt} - z_t^{(N)'} \delta^{(N)} \end{pmatrix}$$

$$= \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{\left(y_{it} - z_t^{(i)'} \delta^{(i)} \right)^2}{\sigma_{ii}}.$$

These results imply that we can write the objective function as

$$Q(\delta, \Sigma) = \frac{NT}{2} \ln(2\pi) + \frac{T}{2} \ln\left(\prod_{i=1}^{N} \sigma_{ii}\right) + \frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{\left(y_{it} - z_{t}^{(i)'} \delta^{(i)}\right)^{2}}{\sigma_{ii}}$$

$$= \frac{NT}{2} \ln(2\pi) + \frac{T}{2} \sum_{i=1}^{N} \ln(\sigma_{ii}) + \frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{\left(y_{it} - z_{t}^{(i)'} \delta^{(i)}\right)^{2}}{\sigma_{ii}}$$

$$= \sum_{i=1}^{N} \left\{ \frac{T}{2} \ln(2\pi) + \frac{T}{2} \ln(\sigma_{ii}) + \frac{1}{2} \sum_{t=1}^{T} \frac{\left(y_{it} - z_{t}^{(i)'} \delta^{(i)}\right)^{2}}{\sigma_{ii}} \right\}.$$

Finally, notice that the MLE is

$$(\widehat{\delta}, \widehat{\Sigma}) = \underset{(\delta, \Sigma)}{\operatorname{arg \, min}} \ Q(\delta, \Sigma)$$

$$= \underset{(\delta, \Sigma)}{\operatorname{arg \, min}} \ \sum_{i=1}^{N} \left\{ \frac{T}{2} \ln(2\pi) + \frac{T}{2} \ln(\sigma_{ii}) + \frac{1}{2} \sum_{t=1}^{T} \frac{\left(y_{it} - z_{t}^{(i)'} \delta^{(i)}\right)^{2}}{\sigma_{ii}} \right\},$$

which can be obtained by minimizing

$$\frac{T}{2}\ln(2\pi) + \frac{T}{2}\ln(\sigma_{ii}) + \frac{1}{2}\sum_{t=1}^{T} \frac{\left(y_{it} - z_{t}^{(i)'}\delta^{(i)}\right)^{2}}{\sigma_{ii}}$$

for each $i \in \{1, ..., N\}$, i.e., OLS equation by equation (MLE based on the marginal distribution of u_{it}).